1
|
Wu Z, Zang S, Wang W, Tan S, Xu Q, Chen X, Han S, Ma J, Shi K, Wang N, Cheng J, Sha Z. Manipulated C5aR1 over/down-expression associates with IL-6 expression during bacterial inflammation in half-smooth tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109706. [PMID: 38897310 DOI: 10.1016/j.fsi.2024.109706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The complement component 5a/complement component 5 receptor 1 (C5a/C5aR1) pathway plays a crucial role in the onset and development of inflammation, but relevant studies in fish are lacking. In this study, we successfully characterized the relationship between half-smooth tongue sole (Cynoglossus semilaevis) C5aR1 (CsC5aR1) and bacterial inflammation. First, we showed that the overexpression of CsC5aR1 significantly increased bacterial pathological damage in the liver and intestine, whereas inhibition attenuated the damage. The in vitro experiments suggested that CsC5aR1 was able to positively regulate the phagocytic activity and respiratory burst of tongue sole macrophages. In terms of both transcriptional and translational levels, overexpression/inhibition of CsC5aR1 was followed by a highly consistent up-regulation/decrease of its downstream canonical inflammatory factor interleukin-6 (CsIL-6). Furthermore, we stimulated macrophages by lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and found a broad-spectrum response to bacterial infections by the C5a/C5aR1 complement pathway together with the downstream inflammatory factor CsIL-6. Subsequently, we directly elucidated that CsIL-6 is an indicator of C5a/C5aR1-mediated inflammation at different infection concentrations, different infectious bacteria (Vibrio anguillarum and Mycobacterium marinum), and different detection levels. These results might provide a new inflammation bio-marker for early warning of bacteria-induced hyperinflammation leading to fish mortality and a promising target for the treatment of bacterial inflammation in teleost.
Collapse
Affiliation(s)
- Zhendong Wu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Shaoqing Zang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Wenwen Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Qian Xu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xuejie Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Sen Han
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Jie Ma
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Kunpeng Shi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Ningning Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; College of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jiayu Cheng
- Engineering and Technology Center for Flatfish Aquaculture of Tangshan, Tangshan Weizhuo Aquaculture Co., Ltd., Tangshan, 063202, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Mohamed H, Child SA, Doherty DZ, Bruning JB, Bell SG. Structural determination and characterisation of the CYP105Q4 cytochrome P450 enzyme from Mycobacterium marinum. Arch Biochem Biophys 2024; 754:109950. [PMID: 38430969 DOI: 10.1016/j.abb.2024.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The cytochrome P450 family of heme metalloenzymes (CYPs) catalyse important biological monooxygenation reactions. Mycobacterium marinum contains a gene encoding a CYP105Q4 enzyme of unknown function. Other members of the CYP105 CYP family have key roles in bacterial metabolism including the synthesis of secondary metabolites. We produced and purified the cytochrome P450 enzyme CYP105Q4 to enable its characterization. Several nitrogen-donor atom-containing ligands were found to bind to CYP105Q4 generating type II changes in the UV-vis absorbance spectrum. Based on the UV-vis absorbance spectra none of the potential substrate ligands we tested with CYP105Q4 were able to displace the sixth distal aqua ligand from the heme, though there was evidence for binding of oleic acid and amphotericin B. The crystal structure of CYP105Q4 in the substrate-free form was determined in an open conformation. A computational structural similarity search (Dali) was used to find the most closely related characterized relatives within the CYP105 family. The structure of CYP105Q4 enzyme was compared to the GfsF CYP enzyme from Streptomyces graminofaciens which is involved in the biosynthesis of a macrolide polyketide. This structural comparison to GfsF revealed conformational changes in the helices and loops near the entrance to the substrate access channel. A disordered B/C loop region, usually involved in substrate recognition, was also observed.
Collapse
Affiliation(s)
- Hebatalla Mohamed
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - Stella A Child
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - Daniel Z Doherty
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA, 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA, 5005, Australia.
| |
Collapse
|
3
|
Gilep A, Varaksa T, Bukhdruker S, Kavaleuski A, Ryzhykau Y, Smolskaya S, Sushko T, Tsumoto K, Grabovec I, Kapranov I, Okhrimenko I, Marin E, Shevtsov M, Mishin A, Kovalev K, Kuklin A, Gordeliy V, Kaluzhskiy L, Gnedenko O, Yablokov E, Ivanov A, Borshchevskiy V, Strushkevich N. Structural insights into 3Fe-4S ferredoxins diversity in M. tuberculosis highlighted by a first redox complex with P450. Front Mol Biosci 2023; 9:1100032. [PMID: 36699703 PMCID: PMC9868604 DOI: 10.3389/fmolb.2022.1100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Ferredoxins are small iron-sulfur proteins and key players in essential metabolic pathways. Among all types, 3Fe-4S ferredoxins are less studied mostly due to anaerobic requirements. Their complexes with cytochrome P450 redox partners have not been structurally characterized. In the present work, we solved the structures of both 3Fe-4S ferredoxins from M. tuberculosis-Fdx alone and the fusion FdxE-CYP143. Our SPR analysis demonstrated a high-affinity binding of FdxE to CYP143. According to SAXS data, the same complex is present in solution. The structure reveals extended multipoint interactions and the shape/charge complementarity of redox partners. Furthermore, FdxE binding induced conformational changes in CYP143 as evident from the solved CYP143 structure alone. The comparison of FdxE-CYP143 and modeled Fdx-CYP51 complexes further revealed the specificity of ferredoxins. Our results illuminate the diversity of electron transfer complexes for the production of different secondary metabolites.
Collapse
Affiliation(s)
- Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus,Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Tatsiana Varaksa
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anton Kavaleuski
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Yury Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia,Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Sviatlana Smolskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Tatsiana Sushko
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Irina Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Ivan Kapranov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mikhail Shevtsov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- European Molecular Biology Laboratory, Hamburg Unit C/O DESY, Hamburg, Germany
| | - Alexander Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia,Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Valentin Gordeliy
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Leonid Kaluzhskiy
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Oksana Gnedenko
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Evgeniy Yablokov
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexis Ivanov
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia,Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia,*Correspondence: Valentin Borshchevskiy, ; Natallia Strushkevich,
| | - Natallia Strushkevich
- Skolkovo Institute of Science and Technology, Moscow, Russia,*Correspondence: Valentin Borshchevskiy, ; Natallia Strushkevich,
| |
Collapse
|
4
|
Ghith A, Doherty DZ, Bruning JB, Russell RA, De Voss JJ, Bell SG. The Structures of the Steroid Binding CYP142 Cytochrome P450 Enzymes from Mycobacterium ulcerans and Mycobacterium marinum. ACS Infect Dis 2022; 8:1606-1617. [PMID: 35881654 DOI: 10.1021/acsinfecdis.2c00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The steroid binding CYP142 cytochrome P450 enzymes of Mycobacterium species are involved in the metabolism of cholesterol and its derivatives. The equivalent enzyme from Mycobacterium ulcerans was studied to compare the degree of functional conservation between members of this CYP family. We compared substrate binding of the CYP142A3 enzymes of M. ulcerans and M. marinum and CYP142A1 from M. tuberculosis using UV-vis spectroscopy. The catalytic oxidation of cholesterol derivatives by all three enzymes was undertaken. Both CYP142A3 enzymes were structurally characterized by X-ray crystallography. The amino acid sequences of the CYP142A3 enzymes are more similar to CYP142A1 from M. tuberculosis than CYP142A2 from Mycolicibacterium smegmatis. Both CYP142A3 enzymes have substrate binding properties, which are more resemblant to CYP142A1 than CYP142A2. The cholest-4-en-3-one-bound X-ray crystal structure of both CYP142A3 enzymes were determined at a resolution of <1.8 Å, revealing the substrate binding mode at a high level of detail. The structures of the cholest-4-en-3-one binding CYP142 enzymes from M. ulcerans and M. marinum demonstrate how the steroid binds in the active site of these enzymes. They provide an explanation for the high selectivity of the enzyme for terminal methyl C-H bond oxidation to form 26-hydroxy derivatives. These enzymes in pathogenic Mycobacterium species are candidates for inhibition. The work here demonstrates that similar drug molecules could target these CYP142 enzymes from different species in order to combat Buruli ulcer or tuberculosis.
Collapse
Affiliation(s)
- Amna Ghith
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Daniel Z Doherty
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Robert A Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Sydney, NSW 2234, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|