1
|
Development of Sedative Dexmedetomidine Sublingual In Situ Gels: In Vitro and In Vivo Evaluations. Pharmaceutics 2022; 14:pharmaceutics14020220. [PMID: 35213953 PMCID: PMC8878141 DOI: 10.3390/pharmaceutics14020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Intravenous dexmedetomidine (DEX) is currently approved by the FDA for the sedation of intubated patients in intensive care units to reduce anxiety and to augment postoperative analgesia. Bradycardia and hypotension are limitations associated with the intravenous administration of DEX. In this study, DEX sublingual in situ gels were developed and assessed for their pH, gelling capacity, viscosity, mucoadhesion and in vitro drug release. The optimized gelling system demonstrated enhanced mucoadhesion, superior gelling capacity, reasonable pH and optimal rheological profile. In vivo, compared to the oral solution, the optimal sublingual gel resulted in a significant higher rate and extent of bioavailability. Although the in situ gel had comparable plasma levels to those observed following intravenous administration, significant amelioration of the systemic adverse reactions were attained. As demonstrated by the hot plate method, a sustained duration of analgesia in rats was observed after sublingual administration of DEX gel compared to the intravenously administered DEX solution. Furthermore, no changes in systolic blood pressure and heart rate were recorded in rats and rabbits, respectively, after sublingual administration of DEX. Sublingual administration of DEX in situ gel provides a promising approach for analgesia and sedation, while circumventing the reported adverse reactions associated with intravenous administration of DEX.
Collapse
|
2
|
Mohassab AM, Hassan HA, Abdelhamid D, Gouda AM, Gomaa HA, Youssif BG, Radwan MO, Fujita M, Otsuka M, Abdel-Aziz M. New quinoline/1,2,4-triazole hybrids as dual inhibitors of COX-2/5-LOX and inflammatory cytokines: Design, synthesis, and docking study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Abdel-Aziz SA, Taher ES, Lan P, Asaad GF, Gomaa HAM, El-Koussi NA, Youssif BGM. Design, synthesis, and biological evaluation of new pyrimidine-5-carbonitrile derivatives bearing 1,3-thiazole moiety as novel anti-inflammatory EGFR inhibitors with cardiac safety profile. Bioorg Chem 2021; 111:104890. [PMID: 33872924 DOI: 10.1016/j.bioorg.2021.104890] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/11/2022]
Abstract
A new series of pyrimidine-5-carbonitrile derivatives 8a-p carrying the 1,3-thiazole moiety has been designed and synthesized as novel anti-inflammatory EGFR inhibitors with cardiac and gastric safety profiles. 8a-p have been assessed for their inhibitory activity against COX-1/COX-2 activity. Compounds 8h, 8n, and 8p were found to be potent and selective COX-2 inhibitors (IC50 = 1.03-1.71 μM) relative to celecoxib (IC50 = 0.88 μM). The most potent COX-2 inhibitors have been further investigated for their in-vivo anti-inflammatory effect. Compounds 8h, 8n, and 8p showed anti-inflammatory activity up to 90%, 94% and 86% of meloxicam after 4 h interval. 8h, 8n, and 8p showed higher gastric safety profiles than meloxicam. A substantial reduction in serum concentrations of PGE2, TNF-α, IL-6, iNO and MDA and a significant induction of TAC was also observed. In vivo experiments on heart rate and blood pressure established the cardiovascular safety profile of 8h, 8n, and 8p. Anti-proliferative and wild-type EGFR inhibitory assays displayed similar results to selective COX-2 inhibition where compounds 8h, 8n, and 8p had a superior inhibition than other tested ones. Molecular docking study demonstrated that these compounds revealed similar orientation and binding interactions as selective COX-2 inhibitors with a higher liability to enter the side pocket selectively. Also, they interacted with EGFR tyrosine kinase main amino acids similar to erlotinib with a strong binding energy score.
Collapse
Affiliation(s)
- Salah A Abdel-Aziz
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt.
| | - Ehab S Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
| | - Gihan F Asaad
- Department of Pharmacology, National Research Centre, Dokki-Giza, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
| | - Nawal A El-Koussi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt; Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
4
|
Li Y, Guo F, Jiang X, Ren J, Miao Y, Ding F, Yu Z. Pharmacokinetics and relative bioavailability of meloxicam oil suspension in pigs after intramuscular administration. J Vet Pharmacol Ther 2019; 43:189-196. [PMID: 31880830 DOI: 10.1111/jvp.12826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/19/2019] [Accepted: 10/27/2019] [Indexed: 11/30/2022]
Abstract
This study aimed to develop one novel meloxicam (MEL) oil suspension for sustained-release and compare the pharmacokinetic characteristics of it with MEL conventional formulation in pigs after a single intramuscular administration. Six healthy pigs were used for the study by a crossover design in two periods with a withdrawal interval of 14 days. Plasma concentrations of MEL were measured by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Pharmacokinetic parameters were calculated by noncompartmental methods. The difference was statistically significant (p < .05) between MEL oil suspension and MEL conventional formulation in pharmacokinetic parameters of mean residence time (6.16 ± 4.04) hr versus (2.66 ± 0.55) hr, peak plasma concentration (Cmax ) (0.82 ± 0.12) µg/ml versus (1.12 ± 0.22) µg/ml, time needed to reach Cmax (Tmax ) (2.33 ± 0.82) hr versus (0.59 ± 0.18) hr, and terminal elimination half-life (t1/2λz ) (3.74 ± 2.66) hr versus (1.55 ± 0.37) hr. The mean area under the concentration-time curve (AUC0-∝ ) of MEL oil suspension and MEL conventional formulation was 5.35 and 3.43 hr µg/ml, respectively, with a relative bioavailability of 155.98%. Results of the present study demonstrated that the MEL oil suspension could prolong the effective time of drugs in blood, thereby reducing the frequency of administration on a course of treatment. Therefore, the novel MEL oil suspension seems to be of great value in veterinary clinical application.
Collapse
Affiliation(s)
- Ying Li
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fanxi Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangyuan Jiang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juncai Ren
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingxue Miao
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fangyi Ding
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zugong Yu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Fikry EM, Hasan WA, Mohamed EG. Rutin and meloxicam attenuate paw inflammation in mice: Affecting sorbitol dehydrogenase activity. J Biochem Mol Toxicol 2018; 32. [PMID: 29315975 DOI: 10.1002/jbt.22029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/12/2017] [Accepted: 12/16/2017] [Indexed: 12/16/2022]
Abstract
Rutin, naturally occurring flavonoid, has reported to cover interesting multiple pharmacological properties. This study evaluated rutin or/and meloxicam effects in paw inflammation induced by formalin in mice. Mice were divided into four groups: I-Formalin group, II-Rutin 60 mg/kg (p.o.), III-Meloxicam 10 mg/kg (p.o.), plus IV-Combined rutin and meloxicam. Therapies were administered once a day for 7 days. The curative effects were assessed on inflammatory, oxidative stress, and apoptosis. Both rutin and/or meloxicam induced marked improvement in paw licking time on the 1st day and by combined treatment only on the 3rd day as well reduction in paw edema% on the 3rd day. Moreover, noticeable progress in liver malondialdehyde content, superoxide dismutase, and sorbitol dehydrogenase activities as well decline in paw interleukin-1β level and extent of apoptosis. The results spot light on the good influence of combined rutin and meloxicam in formalin-induced mice paw inflammation to a better extent than either rutin or meloxicam lonely.
Collapse
Affiliation(s)
- Ebtehal M Fikry
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Wedad A Hasan
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Eman G Mohamed
- Department of Molecular Evaluation, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| |
Collapse
|
6
|
Mohammad F E, Hasan WA, Mohamed EG. Natural antioxidant flavonoids in formalin-induced mice paw inflammation; inhibition of mitochondrial sorbitol dehydrogenase activity. J Biochem Mol Toxicol 2017; 31. [PMID: 28422384 DOI: 10.1002/jbt.21896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/18/2016] [Accepted: 12/22/2016] [Indexed: 12/18/2022]
Abstract
Flavonoids have reported to cover interesting multiple pharmacological properties. This study evaluated the effect of apigenin or silymarin in paw inflammation induced by formalin in mice. Mice were divided into four groups: I: positive control group; II: apigenin, 3 mg/kg (i.p.); III: silymarin 50 mg/kg (p.o.); IV: meloxicam 10 mg/kg (p.o.), the reference drug. Therapies were administered once a day for 7 days. The curative effects were assessed on inflammatory, oxidative stress and neurotransmitter biomarkers, and apoptosis. Both flavonoids induced marked improvement in paw licking time, paw edema %, malondialdehyde content, superoxide dismutase, and sorbitol dehydrogenase activities, with slight progress in paw interlukin-1β. Additionally, silymarin augmented brain content of dopamine and norepinephrine. Furthermore, flavonoids induced marked decline in extent of apoptosis. So, the results spotlight on the good influence of apigenin or silymarin as anti-inflammatory, antioxidant, and antiapoptotic agents in formalin-induced mice paw inflammation to even a better extent than meloxicam.
Collapse
Affiliation(s)
- Ebtehal Mohammad F
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Wedad A Hasan
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Eman G Mohamed
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| |
Collapse
|