1
|
Feng X, Hu X, Yu J, Zhao M, Yang F, Wang X, Zhang C, Weng Y, Han J. A Hydrotalcite-Based PET Composites with Enhanced Properties for Liquid Milk Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1857. [PMID: 36902978 PMCID: PMC10004223 DOI: 10.3390/ma16051857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
In the present work, the two-phase mixture (HTLc) of hydrotalcite and its oxide were used to improve the barrier properties, UV resistance and antimicrobial activity of Poly(ethylene terephthalate) (PET) for their application in liquid milk packaging. Firstly, CaZnAl-CO3-LDHs with a two-dimensional layered structure were synthesized by hydrothermal method. CaZnAl-CO3-LDHs precursors were characterized by XRD, TEM, ICP and dynamic light scattering. A series of PET/HTLc composite films were then prepared, characterized by XRD, FTIR and SEM, and a possible mechanism of the composite films with hydrotalcite was proposed. Barrier properties to water vapor and oxygen have been studied in PET nanocomposites, as well as their antibacterial efficacy by the colony technique and their mechanical properties after exposure to UV irradiation for 24 h. By the presence of 1.5 wt% HTLc in the PET composite film, the oxygen transmission rate (OTR) was reduced by 95.27%, the water vapor transmission rate was reduced by 72.58% and the inhibition against Staphylococcus aureus and Escherichia coli was 83.19% and 52.75%. Moreover, a simulation of the migration process in dairy products was used to prove the relative safety. This research first proposes a safe technique for fabricating hydrotalcite-based polymer composites with a high gas barrier, UV resistance and effective antibacterial activity.
Collapse
Affiliation(s)
- Xiangnan Feng
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaomeng Hu
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jie Yu
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Min Zhao
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Fan Yang
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xinrui Wang
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Caili Zhang
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jingbin Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Determination of cobalt in P. polyphylla var. yunnanensis and S. yunnanensis by micro UV–vis spectrophotometry after deep eutectic solvent-based rapidly synergistic cloud point extraction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Carbon-based sorbents and their nanocomposites for the enrichment of heavy metal ions: a review. Mikrochim Acta 2019; 186:578. [DOI: 10.1007/s00604-019-3668-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/06/2019] [Indexed: 10/26/2022]
|
4
|
Martinez-Cisneros C, da Rocha Z, Seabra A, Valdés F, Alonso-Chamarro J. Highly integrated autonomous lab-on-a-chip device for on-line and in situ determination of environmental chemical parameters. LAB ON A CHIP 2018; 18:1884-1890. [PMID: 29869662 DOI: 10.1039/c8lc00309b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The successful integration of sample pretreatment stages, sensors, actuators and electronics in microfluidic devices enables the attainment of complete micro total analysis systems, also known as lab-on-a-chip devices. In this work, we present a novel monolithic autonomous microanalyzer that integrates microfluidics, electronics, a highly sensitive photometric detection system and a sample pretreatment stage consisting on an embedded microcolumn, all in the same device, for on-line determination of relevant environmental parameters. The microcolumn can be filled/emptied with any resin or powder substrate whenever required, paving the way for its application to several analytical processes: separation, pre-concentration or ionic-exchange. To promote its autonomous operation, avoiding issues caused by bubbles in photometric detection systems, an efficient monolithic bubble removal structure was also integrated. To demonstrate its feasibility, the microanalyzer was successfully used to determine nitrate and nitrite in continuous flow conditions, providing real time and continuous information.
Collapse
|
5
|
Determination of Cobalt in Seawater Using Neutron Activation Analysis after Preconcentration by Adsorption onto γ-MnO2 Nanomaterial. J CHEM-NY 2018. [DOI: 10.1155/2018/9126491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The γ-MnO2 nanomaterial has been used to adsorb cobalt in the seawater at Phan Thiet City, Binh Thuan Province, Vietnam. Its concentration is determined by using the neutron activation analysis (NAA) method at the Dalat nuclear research reactor. Factors affecting the uptake of cobalt on the γ-MnO2 material such as the pH, adsorption time, and initial cobalt(II) concentration are investigated. The irradiated experiment data are calculated using the K0-Dalat program. The results obtained show that the trace dissolved cobalt in Phan Thiet seawater is found equal to 0.25 ± 0.04 μg/L (n=5, P=95%) with the adsorption efficiency being higher than 95% (n=4, P=95%).
Collapse
|
6
|
Turan K, Saygılı Canlıdinç R, Kalfa OM. Determination of trace amounts of Co(II) after preconcentration with surface ion imprinted sorbent based on activated carbon. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1405989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kübra Turan
- Science and Art Faculty, Department of Chemistry, Dumlupınar University, Kütahya, Turkey
| | | | - Orhan Murat Kalfa
- Science and Art Faculty, Department of Chemistry, Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
7
|
Sorouraddin SM, Farajzadeh MA, Ghorbani M. In situ-produced CO2-assisted dispersive liquid–liquid microextraction for extraction and preconcentration of cobalt, nickel, and copper ions from aqueous samples followed by graphite furnace atomic absorption spectrometry determination. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1224-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Hybrid nanosheets composed of molybdenum disulfide and reduced graphene oxide for enhanced solid phase extraction of Pb(II) and Ni(II). Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2000-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Ibrahim WAW, Nodeh HR, Sanagi MM. Graphene-Based Materials as Solid Phase Extraction Sorbent for Trace Metal Ions, Organic Compounds, and Biological Sample Preparation. Crit Rev Anal Chem 2015; 46:267-83. [PMID: 26186420 DOI: 10.1080/10408347.2015.1034354] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Graphene is a new carbon-based material that is of interest in separation science. Graphene has extraordinary properties including nano size, high surface area, thermal and chemical stability, and excellent adsorption affinity to pollutants. Its adsorption mechanisms are through non-covalent interactions (π-π stacking, electrostatic interactions, and H-bonding) for organic compounds and covalent interactions for metal ions. These properties have led to graphene-based material becoming a desirable adsorbent in a popular sample preparation technique known as solid phase extraction (SPE). Numerous studies have been published on graphene applications in recent years, but few review papers have focused on its applications in analytical chemistry. This article focuses on recent preconcentration of trace elements, organic compounds, and biological species using SPE-based graphene, graphene oxide, and their modified forms. Solid phase microextraction and micro SPE (µSPE) methods based on graphene are discussed.
Collapse
Affiliation(s)
- Wan Aini Wan Ibrahim
- a Separation Science and Technology Group (SepSTec), Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia , Johor , Malaysia.,b Frontier Materials Research Alliance, Universiti Teknologi Malaysia , Johor , Malaysia
| | - Hamid Rashidi Nodeh
- a Separation Science and Technology Group (SepSTec), Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia , Johor , Malaysia
| | - Mohd Marsin Sanagi
- b Frontier Materials Research Alliance, Universiti Teknologi Malaysia , Johor , Malaysia.,c Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia , Johor , Malaysia
| |
Collapse
|
10
|
Khaligh A, Mousavi HZ, Shirkhanloo H, Rashidi A. Speciation and determination of inorganic arsenic species in water and biological samples by ultrasound assisted-dispersive-micro-solid phase extraction on carboxylated nanoporous graphene coupled with flow injection-hydride generation atomic absorption spectrometry. RSC Adv 2015. [DOI: 10.1039/c5ra17229b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, carboxylated nanoporous graphene as a nanoadsorbent was evaluated in two types of ultrasound assisted-dispersive micro-solid phase extraction for speciation of trace As(v) and As(iii) ions in natural water and human biological samples.
Collapse
Affiliation(s)
- Aisan Khaligh
- Department of Chemistry
- Semnan University
- Semnan 35131-1911
- Iran
| | | | - Hamid Shirkhanloo
- Occupational and Environmental Health Research Center (OEHRC)
- Iranian Petroleum
- Tehran
- Iran
| | - Alimorad Rashidi
- Nanotechnology Research Center
- Research Institute of Petroleum Industry
- Tehran 1485733111
- Iran
| |
Collapse
|
11
|
Zhou Q, Xing A, Zhao K. Simultaneous determination of nickel, cobalt and mercury ions in water samples by solid phase extraction using multiwalled carbon nanotubes as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography. J Chromatogr A 2014; 1360:76-81. [DOI: 10.1016/j.chroma.2014.07.084] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/19/2014] [Accepted: 07/26/2014] [Indexed: 01/08/2023]
|
12
|
Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B, Wrzalik R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 2013; 42:5682-9. [DOI: 10.1039/c3dt33097d] [Citation(s) in RCA: 611] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|