1
|
Yan S, Lu J, Chen B, Yuan L, Chen L, Ju L, Cai W, Wu J. The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment. Antioxidants (Basel) 2024; 13:897. [PMID: 39199143 PMCID: PMC11351715 DOI: 10.3390/antiox13080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring compound synthesized by mitochondria and widely distributed in both animal and plant tissues. It primarily influences cellular metabolism and oxidative stress networks through its antioxidant properties and is an important drug for treating metabolic diseases associated with oxidative damage. Nevertheless, research indicates that the mechanism by which ALA affects cancer cells is distinct from that observed in normal cells, exhibiting pro-oxidative properties. Therefore, this review aims to describe the main chemical and biological functions of ALA in the cancer environment, including its mechanisms and effects in tumor prevention and anticancer activity, as well as its role as an adjunctive drug in cancer therapy. We specifically focus on the interactions between ALA and various carcinogenic and anti-carcinogenic pathways and discuss ALA's pro-oxidative capabilities in the unique redox environment of cancer cells. Additionally, we elaborate on ALA's roles in nanomedicine, hypoxia-inducible factors, and cancer stem cell research, proposing hypotheses and potential explanations for currently unresolved issues.
Collapse
Affiliation(s)
- Shuai Yan
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Jiajie Lu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Bingqing Chen
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Liuxia Yuan
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Lin Chen
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Linglin Ju
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Weihua Cai
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| | - Jinzhu Wu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| |
Collapse
|
2
|
Benndorf S, Schleusener A, Müller R, Micheel M, Baruah R, Dellith J, Undisz A, Neumann C, Turchanin A, Leopold K, Weigand W, Wächtler M. Covalent Functionalization of CdSe Quantum Dot Films with Molecular [FeFe] Hydrogenase Mimics for Light-Driven Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18889-18897. [PMID: 37014708 PMCID: PMC10120591 DOI: 10.1021/acsami.3c00184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/28/2023] [Indexed: 05/27/2023]
Abstract
CdSe quantum dots (QDs) combined with [FeFe] hydrogenase mimics as molecular catalytic reaction centers based on earth-abundant elements have demonstrated promising activity for photocatalytic hydrogen generation. Direct linking of the [FeFe] hydrogenase mimics to the QD surface is expected to establish a close contact between the [FeFe] hydrogenase mimics and the light-harvesting QDs, supporting the transfer and accumulation of several electrons needed to drive hydrogen evolution. In this work, we report on the functionalization of QDs immobilized in a thin-film architecture on a substrate with [FeFe] hydrogenase mimics by covalent linking via carboxylate groups as the anchoring functionality. The functionalization was monitored via UV/vis, photoluminescence, IR, and X-ray photoelectron spectroscopy and quantified via micro-X-ray fluorescence spectrometry. The activity of the functionalized thin film was demonstrated, and turn-over numbers in the range of 360-580 (short linkers) and 130-160 (long linkers) were achieved. This work presents a proof-of-concept study, showing the potential of thin-film architectures of immobilized QDs as a platform for light-driven hydrogen evolution without the need for intricate surface modifications to ensure colloidal stability in aqueous environments.
Collapse
Affiliation(s)
- Stefan Benndorf
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Alexander Schleusener
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg
4, 07743 Jena, Germany
- Department:
Functional Interface, Leibniz Institute
of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Riccarda Müller
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Mathias Micheel
- Department:
Functional Interface, Leibniz Institute
of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Raktim Baruah
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg
4, 07743 Jena, Germany
- Department:
Functional Interface, Leibniz Institute
of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Jan Dellith
- Department:
Functional Interface, Leibniz Institute
of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Andreas Undisz
- Institute
of Materials Science and Engineering, Chemnitz
University of Technology, Erfenschlager Str. 73, 09125 Chemnitz, Germany
- Otto Schott
Institute of Materials Research, Friedrich
Schiller University Jena, 07743 Jena, Germany
| | - Christof Neumann
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg
4, 07743 Jena, Germany
| | - Andrey Turchanin
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg
4, 07743 Jena, Germany
- Abbe
Center of Photonics (ACP), Friedrich Schiller
University Jena, Albert-Einstein-Straße
6, 07745 Jena, Germany
| | - Kerstin Leopold
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Wolfgang Weigand
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Maria Wächtler
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg
4, 07743 Jena, Germany
- Department:
Functional Interface, Leibniz Institute
of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| |
Collapse
|
3
|
Rochette L, Ghibu S. Mechanics Insights of Alpha-Lipoic Acid against Cardiovascular Diseases during COVID-19 Infection. Int J Mol Sci 2021; 22:7979. [PMID: 34360751 PMCID: PMC8348748 DOI: 10.3390/ijms22157979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) was first reported in Wuhan, China, in late December 2019. Since then, COVID-19 has spread rapidly worldwide and was declared a global pandemic on 20 March 2020. Cardiovascular complications are rapidly emerging as a major peril in COVID-19 in addition to respiratory disease. The mechanisms underlying the excessive effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities remain only partly understood. SARS-CoV-2 infection is caused by binding of the viral surface spike (S) protein to the human angiotensin-converting enzyme 2 (ACE2), followed by the activation of the S protein by transmembrane protease serine 2 (TMPRSS2). ACE2 is expressed in the lung (mainly in type II alveolar cells), heart, blood vessels, small intestine, etc., and appears to be the predominant portal to the cellular entry of the virus. Based on current information, most people infected with SARS-CoV-2 virus have a good prognosis, while a few patients reach critical condition, especially the elderly and those with chronic underlying diseases. The "cytokine storm" observed in patients with severe COVID-19 contributes to the destruction of the endothelium, leading to "acute respiratory distress syndrome" (ARDS), multiorgan failure, and death. At the origin of the general proinflammatory state may be the SARS-CoV-2-mediated redox status in endothelial cells via the upregulation of ACE/Ang II/AT1 receptors pathway or the increased mitochondrial reactive oxygen species (mtROS) production. Furthermore, this vicious circle between oxidative stress (OS) and inflammation induces endothelial dysfunction, endothelial senescence, high risk of thrombosis and coagulopathy. The microvascular dysfunction and the formation of microthrombi in a way differentiate the SARS-CoV-2 infection from the other respiratory diseases and bring it closer to cardiovascular diseases like myocardial infarction and stroke. Due the role played by OS in the evolution of viral infection and in the development of COVID-19 complications, the use of antioxidants as adjuvant therapy seems appropriate in this new pathology. Alpha-lipoic acid (ALA) could be a promising candidate that, through its wide tissue distribution and versatile antioxidant properties, interferes with several signaling pathways. Thus, ALA improves endothelial function by restoring the endothelial nitric oxide synthase activity and presents an anti-inflammatory effect dependent or independent of its antioxidant properties. By improving mitochondrial function, it can sustain the tissues' homeostasis in critical situation and by enhancing the reduced glutathione it could indirectly strengthen the immune system. This complex analysis could open a new therapeutic perspective for ALA in COVID-19 infection.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d’Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne-Franche Comté, 21000 Dijon, France;
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Ding A, Zhang Y, Chen Y, Rios R, Hu J, Guo H. Visible light induced oxidative hydroxylation of boronic acids. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.01.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Saleh HM, El-Sayed YS, Naser SM, Eltahawy AS, Onoda A, Umezawa M. Efficacy of α-lipoic acid against cadmium toxicity on metal ion and oxidative imbalance, and expression of metallothionein and antioxidant genes in rabbit brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24593-24601. [PMID: 28913608 DOI: 10.1007/s11356-017-0158-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
To explore the protective efficacy of α-lipoic acid (ALA) against Cd-prompted neurotoxicity, young male New Zealand rabbits (Oryctolagus cuniculus) were divided randomly into four groups. Group 1 (control) received demineralized water. Group 2 (Cd) administered cadmium chloride (CdCl2) 3 mg/kg bwt. Group 3 (ALA) administered ALA 100 mg/kg bwt. Group 4 (Cd + ALA) administered ALA 1 h after Cd. The treatments were administered orally for 30 consecutive days. Cd-induced marked disturbances in neurochemical parameters were indicated by the reduction in micro- and macro-elements (Zn, Fe, Cu, P, and Ca), with the highest reduction in Cd-exposed rabbits, followed by Cd + ALA group and then ALA group. In the brain tissues, Cd has significantly augmented the lipid hydroperoxides (LPO) and reduced the glutathione (GSH) and total antioxidant capacity (TAC), and glutathione peroxidase and glutathione S-transferase enzyme activities but had an insignificant effect on the antioxidant redox enzymes. Administration of ALA effectively restored LPO and sustained GSH and TAC contents. Moreover, Cd downregulated the transcriptional levels of Nrf2, MT3, and SOD1 genes, and upregulated that of Keap1 gene. ALA treatment, shortly following Cd exposure, downregulated Keap1, and upregulated Nrf2 and GPx1, while maintained MT3 and SOD1 mRNA gene expression in the rabbits' brain. These data indicated the ALA effectiveness in protecting against Cd-induced oxidative stress and the depletion of cellular antioxidants in the brain of rabbits perhaps due to its antioxidant, free radical scavenging, and chelating properties.
Collapse
Affiliation(s)
- Hamida M Saleh
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| | - Sherif M Naser
- Department of Veterinary Genetics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Abdelgawad S Eltahawy
- Department of Veterinary Economics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Atsuto Onoda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
- Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masakazu Umezawa
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
| |
Collapse
|