Abstract
Background
Anthranilic acid is an active compound with diverse biological activities such as anti-inflammatory, antineoplastic, anti-malarial and α-glucosidase inhibitory properties. It can also chelate transition metals to form complexes with applications as antipathogens, photoluminescent materials, corrosion inhibitors, and catalysts.
Results
Anthranilic acid complexes (1–10) of Zn(II), Bi(III), Ag(I), Fe(II), Co(II), Cu(II), Mn(II), Al, Ni(II), and Cr(III) were synthesized and characterized using thermogravimetric (TGA), elemental analysis, FT-IR, UV–vis spectrometry, mass spectrometry and magnetic susceptibility. The morphology and size of metal complex (1–10) particles were determined by scanning electron microscope (SEM) and the surface area was determined by BET analysis. TGA and CHN analysis data indicated that the stoichiometries of complexes were 1:2 metal/ligand except for Ag(I), Al and Bi. Furthermore, DFT study was performed to optimize the structure of selected complexes. The complexes (1–10) were evaluated for their catalytic activity in the reduction of 4-nitrophenol (4-NP), antibacterial activity against S. aureus, P. aeroginosa and E. coli as well as their antifungal activity against F. solani and A. niger. The complexes were also tested against the second-stage juveniles (J2) root-knot nematodes.
Conclusion
Co(II) complex 5 and Cu(II) complex 6 showed high catalytic activity for the reduction of 4-NP to 4-aminophenol (4-AP). Ag(I) complex 3 showed the best activity against the pathogens that were tested namely clinically important bacteria S. aureus, P. aeroginosa and E. coli, commercially important fungi F. solani and A. niger and J2 root-knot nematodes M. javanica.
Collapse