1
|
Xu J, Wang J, Ji Y, Liu Y, Jiang J, Wang Y, Cui X, Wan Y, Guo B, Yu H. The impact of diabetes mellitus on tendon pathology: a review. Front Pharmacol 2024; 15:1491633. [PMID: 39564114 PMCID: PMC11575704 DOI: 10.3389/fphar.2024.1491633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024] Open
Abstract
Diabetes is one of the most common metabolic diseases worldwide, leading to complications, mortality, and significant healthcare expenditures, which impose a substantial social and financial burden globally. A diabetic environment can induce metabolic changes, negatively affecting tendon homeostasis, leading to alterations in biomechanical properties and histopathology. Numerous studies have investigated the mechanisms through which diabetes exerts pathological effects on tendons, including increased free radical production, oxidative stress, inflammatory responses, deposition of advanced glycation end products (AGEs), and microvascular changes. These metabolic changes damages tendon structure, biomechanics, and tendon repair processes. The proliferation of tendon stem cells decreases, apoptosis increases, and abnormal differentiation, along with abnormal expression of myofibroblasts, ultimately lead to insufficient tendon repair, fibrosis, and remodeling. Although researches unveiling the effects of diabetes on tendinopathy, fibrosis or contracture, and tendon injury healing are growing, systematic understanding is still lacking. Therefore, this review summarizes the current research status and provides a comprehensive overview, offering theoretical guidance for future in-depth exploration of the impact of diabetes on tendons and the development of treatments for diabetes-related tendon diseases.
Collapse
Affiliation(s)
- Jian Xu
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Jinbo Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuncong Ji
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Yanlong Liu
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Jishi Jiang
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Yanbo Wang
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Xilong Cui
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Yunpeng Wan
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Biao Guo
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Haiyang Yu
- Department of Orthopedics, Sports Medicine and Arthroscopy, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| |
Collapse
|
2
|
Xu K, Zhang L, Ren Z, Wang T, Zhang Y, Zhao X, Yu T. Evaluating the role of type 2 diabetes mellitus in rotator cuff tendinopathy: Development and analysis of a novel rat model. Front Endocrinol (Lausanne) 2022; 13:1042878. [PMID: 36299460 PMCID: PMC9588920 DOI: 10.3389/fendo.2022.1042878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To establish and validate an intact rotator cuff rat model for exploring the pathophysiological effects of type 2 diabetes on the rotator cuff tendon in vivo. METHODS A total of 45 adult male rats were randomly divided into a control group (n = 9) and type 2 diabetes group (n=36). The rats were sacrificed at 2 weeks (T2DM-2w group, n=9), 4 weeks (T2DM-4w group, n=9), 8 weeks (T2DM-8w group, n=9), and 12 weeks (T2DM-12w group, n=9) after successful modeling of type 2 diabetes. Bilateral shoulder samples were collected for gross observation and measurement, protein expression(enzyme-linked immunosorbent assay,ELISA), histological evaluation, biomechanical testing, and gene expression (real-time quantitative polymerase chain reaction, qRT-PCR). RESULTS Protein expression showed that the expression of IL-6 and Advanced glycation end products (AGEs)in serum increased in type 2 diabetic group compared with the non-diabetic group. Histologically, collagen fibers in rotator cuff tendons of type 2 diabetic rats were disorganized, ruptured, and with scar hyperplasia, neovascularization, and extracellular matrix disturbances, while Bonar score showed significant and continuously aggravated tendinopathy over 12 weeks. The biomechanical evaluation showed that the ultimate load of rotator cuff tendons in type 2 diabetic rats gradually decreased, and the ultimate load was negatively correlated with AGEs content. Gene expression analysis showed increased expression of genes associated with matrix remodeling (COL-1A1), tendon development (TNC), and fatty infiltration (FABP4) in tendon specimens from the type 2 diabetic group. CONCLUSION Persistent type 2 diabetes is associated with the rupture of collagen fiber structure, disturbance in the extracellular matrix, and biomechanical decline of the rotator cuff tendon. The establishment of this new rat model of rotator cuff tendinopathy provides a valuable research basis for studying the cellular and molecular mechanisms of diabetes-induced rotator cuff tendinopathy.
Collapse
Affiliation(s)
- Kuishuai Xu
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liang Zhang
- Department of Abdominal Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongkai Ren
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianrui Wang
- Department of Traumatology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Zhao
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Xia Zhao, ; Tengbo Yu,
| | - Tengbo Yu
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Xia Zhao, ; Tengbo Yu,
| |
Collapse
|