1
|
Yellon SM, Greaves E, Heuerman AC, Dobyns AE, Norman JE. Effects of macrophage depletion on characteristics of cervix remodeling and pregnancy in CD11b-dtr mice. Biol Reprod 2020; 100:1386-1394. [PMID: 30629144 DOI: 10.1093/biolre/ioz002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/30/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
To test the hypothesis that macrophages are essential for remodeling the cervix in preparation for birth, pregnant homozygous CD11b-dtr mice were injected with diphtheria toxin (DT) on days 14 and 16 postbreeding. On day 15 postbreeding, macrophages (F4/80+) were depleted in cervix and kidney, but not in liver, ovary, or other non-reproductive tissues in DT-compared to saline-treated dtr mice or wild-type controls given DT or saline. Within 24 h of DT-treatment, the density of cell nuclei and macrophages declined in cervix stroma in dtr mice versus controls, but birefringence of collagen, as an indication of extracellular cross-linked structure, remained unchanged. Only in the cervix of DT-treated dtr mice was an apoptotic morphology evident in macrophages. DT-treatment did not alter the sparse presence or morphology of neutrophils. By day 18 postbreeding, macrophages repopulated the cervix in DT-treated dtr mice so that the numbers were comparable to that in controls. However, at term, evidence of fetal mortality without cervix ripening occurred in most dtr mice given DT-a possible consequence of treatment effects on placental function. These findings suggest that CD11b+ F4/80+ macrophages are important to sustain pregnancy and are required for processes that remodel the cervix in preparation for parturition.
Collapse
Affiliation(s)
- S M Yellon
- Longo Center for Perinatal Biology.,Division of Physiology, Departments of Basic Sciences, and Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - E Greaves
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland EH16 4TJ, United Kingdom
| | | | | | - J E Norman
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland EH16 4TJ, United Kingdom
| |
Collapse
|
2
|
Fernandez GJ, Ferreira JH, Vechetti IJ, de Moraes LN, Cury SS, Freire PP, Gutiérrez J, Ferretti R, Dal-Pai-Silva M, Rogatto SR, Carvalho RF. MicroRNA-mRNA Co-sequencing Identifies Transcriptional and Post-transcriptional Regulatory Networks Underlying Muscle Wasting in Cancer Cachexia. Front Genet 2020; 11:541. [PMID: 32547603 PMCID: PMC7272700 DOI: 10.3389/fgene.2020.00541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer cachexia is a metabolic syndrome with alterations in gene regulatory networks that consequently lead to skeletal muscle wasting. Integrating microRNAs-mRNAs omics profiles offers an opportunity to understand transcriptional and post-transcriptional regulatory networks underlying muscle wasting. Here, we used RNA sequencing to simultaneously integrate and explore microRNAs and mRNAs expression profiles in the tibialis anterior (TA) muscles of the Lewis Lung Carcinoma (LLC) model of cancer cachexia. We found 1,008 mRNAs and 18 microRNAs differentially expressed in cachectic mice compared with controls. Although our transcriptomic analysis demonstrated a high heterogeneity in mRNA profiles of cachectic mice, we identified a reduced number of differentially expressed genes that were uniformly regulated within cachectic muscles. This set of uniformly regulated genes is associated with the extracellular matrix (ECM), proteolysis, and inflammatory response. We also used transcriptomic data to perform enrichment analysis of transcriptional factor binding sites in promoter sequences, which revealed activation of the atrophy-related transcription factors NF-κB, Stat3, AP-1, and FoxO. Furthermore, the integration of mRNA and microRNA expression profiles identified post-transcriptional regulation by microRNAs of genes involved in ECM organization, cell migration, transcription factors binding, ion transport, and the FoxO signaling pathway. Our integrative analysis of microRNA-mRNA co-profiles comprehensively characterized regulatory relationships of molecular pathways and revealed microRNAs targeting ECM-associated genes in cancer cachexia.
Collapse
Affiliation(s)
- Geysson Javier Fernandez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil.,Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Juarez Henrique Ferreira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Ivan José Vechetti
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Leonardo Nazario de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Paula Paccielli Freire
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Jayson Gutiérrez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Renato Ferretti
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
3
|
Abstract
The cervix is the essential gatekeeper for birth. Incomplete cervix remodeling contributes to problems with delivery at or post-term while preterm birth is a major factor in perinatal morbidity and mortality in newborns. Lack of cervix biopsies from women during the period preceding term or preterm birth have led to use of rodent models to advanced understanding of the mechanism for prepartum cervix remodeling. The critical transition from a soft cervix to a compliant prepartum lower uterine segment has only recently been recognized to occur in various mammalian species when progesterone in circulation is at or near the peak of pregnancy in preparation for birth. In rodents, characterization of ripening resembles an inflammatory process with a temporal coincidence of decreased density of cell nuclei, decline in cross-linked extracellular collagen, and increased presence of macrophages in the cervix. Although a role for inflammation in parturition and cervix remodeling is not a new concept, a comprehensive examination of literature in this review reveals that many conclusions are drawn from comparisons before and after ripening has occurred, not during the process. The present review focuses on essential phenotypes and functions of resident myeloid and possibly other immune cells to bridge the gap with evidence that specific biomarkers may assess the progress of ripening both at term and with preterm birth. Moreover, use of endpoints to determine the effectiveness of various therapeutic approaches to forestall remodeling and reduce risks for preterm birth, or facilitate ripening to promote parturition will improve the postpartum well-being of mothers and newborns.
Collapse
Affiliation(s)
- Steven M Yellon
- Department of Basic Sciences, Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
4
|
Yan Y, Gomez-Lopez N, Basij M, Shahvari AV, Vadillo-Ortega F, Hernandez-Andrade E, Hassan SS, Romero R, MehrMohammadi M. Photoacoustic imaging of the uterine cervix to assess collagen and water content changes in murine pregnancy. BIOMEDICAL OPTICS EXPRESS 2019; 10:4643-4655. [PMID: 31565515 PMCID: PMC6757472 DOI: 10.1364/boe.10.004643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/03/2019] [Accepted: 08/03/2019] [Indexed: 05/11/2023]
Abstract
The uterine cervix plays a central role in the maintenance of pregnancy and in the process of parturition. Cervical remodeling involves dramatic changes in extracellular matrix composition and, in particular, of collagen and water content during cervical ripening (a term that describes the anatomical, biochemical, and physiologic changes in preparation for labor). Untimely cervical ripening in early gestation predisposes to preterm labor and delivery, the leading cause of infant death worldwide. Inadequate ripening of the cervix is associated with failure of induction or prolonged labor. The current approach to evaluate the state of the cervix relies on digital examination and sonographic examination. Herein, we present a novel imaging method that combines ultrasound (US) and photoacoustic (PA) techniques to evaluate cervical remodeling by assessing the relative collagen and water content of this organ. The method was tested in vitro in extracted collagen phantoms and ex vivo in murine cervical tissues that were collected in mid-pregnancy and at term. We report, for the first time, that our imaging approach provides information about the molecular changes in the cervix at different gestational ages. There was a strong correlation between the results of PA imaging and the histological assessment of the uterine cervix over the course of gestation. These findings suggest that PA imaging is a powerful method to assess the biochemical composition of the cervix and open avenues to non-invasively investigate the composition of this organ, which is essential for reproductive success.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Immunology, and, Microbiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI 48201, USA
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | | | - Felipe Vadillo-Ortega
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
- Unidad de Vinculación de la Facultad de Medicina,UNAM y Dirección de Investigación, Instituto Nacional de Medicina Genómica, CDMX, Mexico
| | - Edgar Hernandez-Andrade
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199, USA
| | - Mohammad MehrMohammadi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
5
|
The Myometrium: From Excitation to Contractions and Labour. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:233-263. [PMID: 31183830 DOI: 10.1007/978-981-13-5895-1_10] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
We start by describing the functions of the uterus, its structure, both gross and fine, innervation and blood supply. It is interesting to note the diversity of the female's reproductive tract between species and to remember it when working with different animal models. Myocytes are the overwhelming cell type of the uterus (>95%) and our focus. Their function is to contract, and they have an intrinsic pacemaker and rhythmicity, which is modified by hormones, stretch, paracrine factors and the extracellular environment. We discuss evidence or not for pacemaker cells in the uterus. We also describe the sarcoplasmic reticulum (SR) in some detail, as it is relevant to calcium signalling and excitability. Ion channels, including store-operated ones, their contributions to excitability and action potentials, are covered. The main pathway to excitation is from depolarisation opening voltage-gated Ca2+ channels. Much of what happens downstream of excitability is common to other smooth muscles, with force depending upon the balance of myosin light kinase and phosphatase. Mechanisms of maintaining Ca2+ balance within the myocytes are discussed. Metabolism, and how it is intertwined with activity, blood flow and pH, is covered. Growth of the myometrium and changes in contractile proteins with pregnancy and parturition are also detailed. We finish with a description of uterine activity and why it is important, covering progression to labour as well as preterm and dysfunctional labours. We conclude by highlighting progress made and where further efforts are required.
Collapse
|
6
|
Kirby MA, Heuerman AC, Yellon SM. Utility of Optical Density of Picrosirius Red Birefringence for Analysis of Cross-Linked Collagen in Remodeling of the Peripartum Cervix for Parturition. INTEGRATIVE GYNECOLOGY AND OBSTETRICS JOURNAL 2018; 1. [PMID: 30175325 DOI: 10.31038/igoj.2018107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report on development of a rapid, quantitative analysis technique of collagen fibers in cross-linked structures to assess remodeling of the cervix during the transition from soft to ripening in preparation for birth. Optical density analysis of picrosirius red stain tissue using circular polarized birefringence light from fixed paraffin-embedded or frozen cervix from pregnant mice during phases of remodeling prior to birth. Data were analyzed using NIH Image J and extended recently to include studies of prepartum cervix in peripartum women. Our results, developed a rapid, consistent, technique to quantify cervical organization. This approach assesses the structure of collagen organization (the principle component of the cervix) and is essential for analysis of experimental outcomes that disrupt cervical morphology in rodent models of preterm birth. The technique, in this report has, for the first time permitted rapid, accurate assessment of the stages that define cervical ripening with large numbers of slides from individual animals. The approach integrates analysis of collagen organization, with distensability and inflammation, processes associated with cervical change before birth. This analysis further holds promise to evaluate other tissues, but also fibrolytic and fibrogenic changes in collagen associated with physiological or pathophysiological conditions.
Collapse
Affiliation(s)
- Michael A Kirby
- Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda University. Loma Linda, California, USA.,Departments of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda University. Loma Linda, California, USA.,Pediatrics, Loma Linda University School of Medicine, Loma Linda University. Loma Linda, California, USA
| | - Anne C Heuerman
- Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda University. Loma Linda, California, USA
| | - Steven M Yellon
- Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda University. Loma Linda, California, USA.,Pediatrics, Loma Linda University School of Medicine, Loma Linda University. Loma Linda, California, USA.,Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, Loma Linda University. Loma Linda, California, USA
| |
Collapse
|
7
|
Wang Y, Wang Z, Yu W, Sheng X, Zhang H, Han Y, Yuan Z, Weng Q. Seasonal expressions of androgen receptor, estrogen receptors and cytochrome P450 aromatase in the uteri of the wild Daurian ground squirrels (Spermophilus dauricus). Eur J Histochem 2018; 62:2889. [PMID: 29569876 PMCID: PMC5820527 DOI: 10.4081/ejh.2018.2889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 01/28/2023] Open
Abstract
The reproductive tissues including the uterus undergo dramatic changes in seasonal breeders from the breeding to non-breeding seasons. Classically, sex steroid hormones play important roles in the uterine morphology and functions. To clarify the relationship between sex steroid hormones and seasonal changes in the uterine morphology and functions, the wild Daurian ground squirrels (Spermophilus dauricus) were used as seasonal breeder model. And the immunolocalizations and expression levels of androgen receptor (AR), estrogen receptors α and β (ERα and ERβ) and cytochrome P450 aromatase (P450arom) were investigated in the uteri of the wild Daurian ground squirrels in the breeding (April) and the non-breeding (June) seasons via immunohistochemistry, Western blot and RT-PCR. Histologically, the uterine weight, the thickness of endometrium and the glandular density were significantly higher in the uteri of the breeding season than those of the non-breeding season. In both seasons, the immunostaining of AR was only presented in stromal cells of the uteri; the positive staining of ERα and ERβ were localized in stromal cells and glandular cells; P450arom was merely immunolocalized in glandular cells. The protein and mRNA expression levels of ERα, ERβ and P450arom were higher in the uteri of the breeding season than those of the non-breeding season; conversely, the expressions of AR were higher in the uteri of the non-breeding season comparing with those of the breeding season in both protein and mRNA levels. The AR: ER ratio in the uteri of the non-breeding season exceeded the AR: ER ratio in the uteri of the breeding season in the wild Daurian ground squirrels. These results suggested that seasonal changes in the expression levels of AR, ERs and P450arom might be correlated with the uterine morphology and histology changes, and estrogen may play an important autocrine/paracrine role in regulating the uterine functions of the wild Daurian ground squirrels.
Collapse
Affiliation(s)
- Yu Wang
- Beijing Forestry University, College of Biological Science and Technology.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Vagus nerve stimulation in pregnant rats and effects on inflammatory markers in the brainstem of neonates. Pediatr Res 2018; 83:514-519. [PMID: 29053705 PMCID: PMC5866172 DOI: 10.1038/pr.2017.265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/25/2017] [Indexed: 01/29/2023]
Abstract
BackgroundVagus nerve stimulation (VNS) is an Food and Drug Administration-approved method delivering electrical impulses for treatment of depression and epilepsy in adults. The vagus nerve innervates the majority of visceral organs and cervix, but potential impacts of VNS on the progress of pregnancy and the fetus are not well studied.MethodsWe tested the hypothesis that VNS in pregnant dams does not induce inflammatory changes in the cardio-respiratory control regions of the pups' brainstem, potentially impacting the morbidity and mortality of offspring. Pregnant dams were implanted with stimulators providing intermittent low or high frequency electrical stimulation of the sub-diaphragmatic esophageal segment of the vagus nerve for 6-7 days until delivery. After birth, we collected pup brainstems that included cardio-respiratory control regions and counted the cells labeled for pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, tumor necrosis factor-α) and high mobility group box 1.ResultsNeither pup viability nor number of cells labeled for pro-inflammatory cytokines in nucleus tractus solitarii or hypoglossal motor nucleus was impaired by VNS. We provide evidence suggesting that chronic VNS of pregnant mothers does not impede the progress or outcome of pregnancy.ConclusionVNS does not cause preterm birth, affect well-being of progeny, or impact central inflammatory processes that are critical for normal cardiovascular and respiratory function in newborns.
Collapse
|
9
|
Han W, Xie W, Zhang Y, Zhang F, Zhang H, Han Y, Yuan Z, Weng Q. Seasonal expression of P450c17 and 5α-reductase-2 in the scented gland of male muskrats (Ondatra zibethicus). Gen Comp Endocrinol 2017; 254:60-67. [PMID: 28919450 DOI: 10.1016/j.ygcen.2017.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/03/2017] [Accepted: 09/13/2017] [Indexed: 02/04/2023]
Abstract
Cytochrome P450 17A1 (P450c17) is the key enzyme required for the production of androgenic sex steroids by converting progestogens to androgens. 5α-reductases are enzymes that convert testosterone (T) to dihydrotestosterone (DHT), which has a greater affinity for androgen receptors (AR) and stronger action than T. Our previous studies revealed that the scented glands of male muskrats expressed AR during the breeding and nonbreeding seasons. To further seek evidence of the activities of androgens in scented glands, the expression patterns of P450c17 and 5α-reductase 2 were investigated in the scented glands of male muskrats during the breeding and nonbreeding seasons. The weight and size of scented glands in the breeding season were significantly higher than those of the nonbreeding season. Immunohistochemical data showed that P450c17 and 5α-reductase 2 were presented in the glandular cells and epithelial cells of scented glands in both the seasons. The protein and mRNA expression of P450c17 and 5α-reductase 2 were significantly higher in the scented gland during the breeding season than those during the nonbreeding season. In addition, the levels of DHT and T in the scented gland were remarkably higher during the breeding season. Taken together, these results suggested that the scented glands of male muskrats were capable of locally synthesizing T and DHT, and T and DHT might play an important role in the scented glandular function via an autocrine or paracrine manner.
Collapse
Affiliation(s)
- Wentao Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yan Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Fengwei Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
10
|
Xi L, Liu Y, Tang Z, Sheng X, Zhang H, Weng Q, Xu M. Expression of leptin receptor in the oviduct of Chinese brown frog (Rana dybowskii). Am J Physiol Regul Integr Comp Physiol 2017; 312:R912-R918. [DOI: 10.1152/ajpregu.00020.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 11/22/2022]
Abstract
The oviduct of Chinese brown frog ( Rana dybowskii) expands specifically during prehibernation instead of in the breeding period. In this study, we investigated the expression of leptin receptor (Ob-Rb) in Rana dybowskii oviduct during the breeding period and prehibernation. Histologically, the oviduct of Rana dybowskii consists of glandular cells, tubule lumen, and epithelial cells. The oviductal weight and pipe diameter also revealed significant differences, which were higher in prehibernation than that of the breeding period. Ob-Rb was observed in stromal cells of oviductal tissue in both the breeding period and prehibernation. The mean protein and mRNA levels of the Ob-Rb were significantly higher in prehibernation as compared with the breeding period. In addition, oviductal content of leptin was also higher in prehibernation than that of the breeding period. These results suggested that oviduct of Rana dybowskii might be a target organ of leptin, and leptin may play an autocrine/paracrine role mediated by Ob-Rb in regulating the oviductal hypertrophy during prehibernation.
Collapse
Affiliation(s)
- Liqin Xi
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China; and
| | - Yuning Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China; and
| | - Zeqi Tang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China; and
| | - Xia Sheng
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China; and
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China; and
| | - Meiyu Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China; and
| |
Collapse
|
11
|
Yellon SM. Contributions to the dynamics of cervix remodeling prior to term and preterm birth. Biol Reprod 2017; 96:13-23. [PMID: 28395330 PMCID: PMC5803764 DOI: 10.1095/biolreprod.116.142844] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/01/2016] [Accepted: 11/28/2016] [Indexed: 01/05/2023] Open
Abstract
Major clinical challenges for obstetricians and neonatologists result from early cervix remodeling and preterm birth. Complications related to cervix remodeling or delivery account for significant morbidity in newborns and peripartum mothers. Understanding morphology and structure of the cervix in pregnant women is limited mostly to the period soon before and after birth. However, evidence in rodent models supports a working hypothesis that a convergence of factors promotes a physiological inflammatory process that degrades the extracellular collagen matrix and enhances biomechanical distensibility of the cervix well before the uterus develops the contractile capabilities for labor. Contributing factors to this remodeling process include innervation, mechanical stretch, hypoxia, and proinflammatory mediators. Importantly, the softening and shift to ripening occurs while progesterone is near peak concentrations in circulation across species. Since progesterone is required to maintain pregnancy, the premise of this review is that loss of responsiveness to progesterone constitutes a common final mechanism for remodeling the mammalian cervix in preparation for birth at term. Various inputs are suggested to promote signaling between stromal cells and resident macrophages to drive proinflammatory processes that advance the soft cervix into ripening. With infection, pathophysiological processes may prematurely drive components of this remodeling mechanism and lead to preterm birth. Identification of critical molecules and pathways from studies in various rodent models hold promise for novel endpoints to assess risk and provide innovative approaches to treat preterm birth or promote the progress of ripening at term.
Collapse
Affiliation(s)
- Steven M. Yellon
- Longo Center for Perinatal Biology, Departments of Basic Sciences Division of Physiology and Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
12
|
Kirby MA, Heuerman AC, Custer M, Dobyns AE, Strilaeff R, Stutz KN, Cooperrider J, Elsissy JG, Yellon SM. Progesterone Receptor-Mediated Actions Regulate Remodeling of the Cervix in Preparation for Preterm Parturition. Reprod Sci 2016; 23:1473-1483. [PMID: 27233754 DOI: 10.1177/1933719116650756] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study determined whether a progesterone (P) receptor (PR)-mediated mechanism regulates morphological characteristics associated with prepartum cervix remodeling at term and with preterm birth. With focus on the transition from a soft to ripe cervix, the cervix stroma of untreated controls had reduced cell nuclei density/area and less organized extracellular collagen, while the density of macrophages/area, but not neutrophils, increased just 2 days before birth (day 17 vs day 15 or 16.5 postbreeding). Preterm birth was induced within 24 hours of treatment on day 16 postbreeding with PR antagonist or ovariectomy (Ovx). Pure or mixed PR antagonists increased the density of macrophages in the cervix within 8 hours (day 16.5 postbreeding), in advance of preterm birth. However, neither PR antagonists nor P withdrawal after Ovx affected the densities of cell nuclei and neutrophils or extracellular collagen compared to the same day controls-an indication that the cervix was sufficiently remodeled for birth to occur. To block the effect of systemic P withdrawal, Ovx pregnant mice were given a PR agonist, either pure or mixed. These treatments forestalled preterm birth and prevented further morphological remodeling of the cervix. The resulting increase in macrophage density in cervix stroma following Ovx was only blocked by a pure PR agonist. These findings support the hypothesis that inflammatory processes in the prepartum cervix that include residency of macrophages, cellular hypertrophy, and extracellular collagen structure are regulated by genomic actions of PR in a final common mechanism both at term and with induced preterm birth.
Collapse
Affiliation(s)
- Michael A Kirby
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA Departments of Pathology and Human anatomy, and Pediatrics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Anne C Heuerman
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Melisa Custer
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Abigail E Dobyns
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Ryan Strilaeff
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Kathleen N Stutz
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jaclyn Cooperrider
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Joseph G Elsissy
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Steven M Yellon
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA Departments of Pathology and Human anatomy, and Pediatrics, School of Medicine, Loma Linda University, Loma Linda, CA, USA Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
13
|
Mónica Brauer M, Smith PG. Estrogen and female reproductive tract innervation: cellular and molecular mechanisms of autonomic neuroplasticity. Auton Neurosci 2014; 187:1-17. [PMID: 25530517 DOI: 10.1016/j.autneu.2014.11.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 02/08/2023]
Abstract
The female reproductive tract undergoes remarkable functional and structural changes associated with cycling, conception and pregnancy, and it is likely advantageous to both individual and species to alter relationships between reproductive tissues and innervation. For several decades, it has been appreciated that the mammalian uterus undergoes massive sympathetic axon depletion in late pregnancy, possibly representing an adaptation to promote smooth muscle quiescence and sustained blood flow. Innervation to other structures such as cervix and vagina also undergo pregnancy-related changes in innervation that may facilitate parturition. These tissues provide highly tractable models for examining cellular and molecular mechanisms underlying peripheral nervous system plasticity. Studies show that estrogen elicits rapid degeneration of sympathetic terminal axons in myometrium, which regenerate under low-estrogen conditions. Degeneration is mediated by the target tissue: under estrogen's influence, the myometrium produces proteins repulsive to sympathetic axons including BDNF, neurotrimin, semaphorins, and pro-NGF, and extracellular matrix components are remodeled. Interestingly, nerve depletion does not involve diminished levels of classical sympathetic neurotrophins that promote axon growth. Estrogen also affects sympathetic neuron neurotrophin receptor expression in ways that appear to favor pro-degenerative effects of the target tissue. In contrast to the uterus, estrogen depletes vaginal autonomic and nociceptive axons, with the latter driven in part by estrogen-induced suppression of BMP4 synthesis. These findings illustrate that hormonally mediated physiological plasticity is a highly complex phenomenon involving multiple, predominantly repulsive target-derived factors acting in concert to achieve rapid and selective reductions in innervation.
Collapse
Affiliation(s)
- M Mónica Brauer
- Laboratory of Cell Biology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| | - Peter G Smith
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States; Institute for Neurological Discoveries, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
14
|
Lu L, Liu S, Li Q, Huang S, Bao L, Sheng X, Han Y, Watanabe G, Taya K, Weng Q. Seasonal expression of androgen receptor in scented gland of muskrat (Ondatra zibethicus). Gen Comp Endocrinol 2014; 204:1-7. [PMID: 24818970 DOI: 10.1016/j.ygcen.2014.04.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/17/2014] [Accepted: 04/19/2014] [Indexed: 01/22/2023]
Abstract
Muskrat is a seasonal breeder, males of which secret musk from paired perineal scented glands found beneath the skin at the ventral base of the tail for attracting female during the breeding season. The aim of this study was to investigate the seasonal changes of expression of androgen receptor (AR) in the scented gland of muskrat during the breeding and nonbreeding seasons. Histologically, glandular cells, interstitial cells and excretory tubules were identified in scented glands in both seasons, whereas epithelial cells were sparse in the nonbreeding season. AR was observed in glandular cells of scented glands during the breeding and nonbreeding seasons with stronger immunostaining during the breeding season compared to the nonbreeding season. Consistent with the immunohistochemical results, AR protein level was higher in the scented glands of the breeding season, and then decreased to a relatively low level in the nonbreeding season. The mean mRNA level of Ar was significantly higher in the breeding season than in the nonbreeding season. In addition, plasma gonadotropins and testosterone concentrations were remarkably higher in the breeding season than those in the nonbreeding season. These results suggested that muskrat scented gland was the direct target organ of androgen, and stronger expression of AR in scented glands during the breeding season suggested that androgens may directly influence scented glandular function of the muskrats and also courtship behavior as we inferred.
Collapse
Affiliation(s)
- Lu Lu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shuqiang Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qinglin Li
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shiyang Huang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Lihong Bao
- Institute of Public Health, Inner Mongolia University for Nationalities, Tongliao 028000, PR China
| | - Xia Sheng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazuyoshi Taya
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
15
|
Yellon SM, Dobyns AE, Beck HL, Kurtzman JT, Garfield RE, Kirby MA. Loss of progesterone receptor-mediated actions induce preterm cellular and structural remodeling of the cervix and premature birth. PLoS One 2013; 8:e81340. [PMID: 24339918 PMCID: PMC3858221 DOI: 10.1371/journal.pone.0081340] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
A decline in serum progesterone or antagonism of progesterone receptor function results in preterm labor and birth. Whether characteristics of premature remodeling of the cervix after antiprogestins or ovariectomy are similar to that at term was the focus of the present study. Groups of pregnant rats were treated with vehicle, a progesterone receptor antagonist (onapristone or mifepristone), or ovariectomized on day 17 postbreeding. As expected, controls given vehicle delivered at term while rats delivered preterm after progesterone receptor antagonist treatment or ovariectomy. Similar to the cervix before term, the preterm cervix of progesterone receptor antagonist-treated rats was characterized by reduced cell nuclei density, decreased collagen content and structure, as well as a greater presence of macrophages per unit area. Thus, loss of nuclear progesterone receptor-mediated actions promoted structural remodeling of the cervix, increased census of resident macrophages, and preterm birth much like that found in the cervix at term. In contrast to the progesterone receptor antagonist-induced advance in characteristics associated with remodeling, ovariectomy-induced loss of systemic progesterone did not affect hypertrophy, extracellular collagen, or macrophage numbers in the cervix. Thus, the structure and macrophage census in the cervix appear sufficient for premature ripening and birth to occur well before term. With progesterone receptors predominantly localized on cells other than macrophages, the findings suggest that interactions between cells may facilitate the loss of progesterone receptor-mediated actions as part of a final common mechanism that remodels the cervix in certain etiologies of preterm and with parturition at term.
Collapse
Affiliation(s)
- Steven M. Yellon
- Division of Physiology, Department of Basic Sciences and Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Pediatrics, Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Obstetrics and Gynecology, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Abigail E. Dobyns
- Division of Physiology, Department of Basic Sciences and Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Hailey L. Beck
- Division of Physiology, Department of Basic Sciences and Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - James T. Kurtzman
- Department of Obstetrics and Gynecology, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Robert E. Garfield
- St. Joseph's Hospital and Medical Center, Department of Obstetrics and Gynecology, Phoenix, Arizona, United States of America
| | - Michael A. Kirby
- Division of Physiology, Department of Basic Sciences and Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Pediatrics, Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| |
Collapse
|
16
|
Malvasi A, Cavallotti C, Nicolardi G, Pellegrino M, Vergara D, Greco M, Kosmas I, Mynbaev OA, Kumakiri J, Tinelli A. The opioid neuropeptides in uterine fibroid pseudocapsules: a putative association with cervical integrity in human reproduction. Gynecol Endocrinol 2013; 29:982-8. [PMID: 23937196 DOI: 10.3109/09513590.2013.824958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The myoma pseudocapsule (MP) is a fibro-vascular network rich of neurotransmitters, as a neurovascular bundle, surrounding fibroid and separating myoma from myometrium. We investigated the distribution of the opioid neuropeptides, as enkephalin (ENK) and oxytocin (OXT), in the nerve fibers within MP and their possible influence in human reproduction in 57 women. An histological and immunofluorescent staining of OXT and ENK was performed on nerve fibers of MP samples from the fundus, corpus and isthmian-cervical regions, with a successive morphometric quantification of OXT and ENK. None of the nerve fibers in the uterine fundus and corpus MPs contained ENK and the nerve fibers in the isthmian-cervical region demonstrated an ENK value of up to 94 ± 0.7 CU. A comparatively lower number of OXT-positive nerve fibers were found in the fundal MP (6.3 ± 0.8 CU). OXT-positive nerve fibers with OXT were marginally increased in corporal MP (15.0 ± 1.4 CU) and were substantially higher in the isthmian-cervical region MP (72.1 ± 5.1 CU) (p < 0.01). The distribution of OXY neurofibers showed a slight into the uterine corpus, while are highly present into the cervico-isthmic area, with influence on reproductive system and sexual disorders manifesting after surgical procedures on the cervix.
Collapse
Affiliation(s)
- Antonio Malvasi
- Department of Obstetric & Gynecology, Santa Maria Hospital , Bari , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nold C, Maubert M, Anton L, Yellon S, Elovitz MA. Prevention of preterm birth by progestational agents: what are the molecular mechanisms? Am J Obstet Gynecol 2013; 208:223.e1-7. [PMID: 23433326 DOI: 10.1016/j.ajog.2013.01.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/04/2013] [Accepted: 01/11/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Clinically, vaginal progesterone (VP) and 17 alpha-hydroxyprogesterone caproate (17P) have been shown to prevent preterm birth (PTB) in high-risk populations. We hypothesize that treatment with these agents may prevent PTB by altering molecular pathways involved in uterine contractility or cervical remodeling. STUDY DESIGN Using a mouse model, on embryonic day (E)14-E17 CD-1 pregnant mice were treated with: (1) 0.1 mL of 25 mg/mL of 17P subcutaneously; (2) 0.1 mL of castor oil subcutaneously; (3) 0.1 mL of 10 mg/mL of progesterone in a long-lasting Replens (Lil' Drug Store Products, Inc., Cedar Rapids, IA); or (4) 0.1 mL of the same Replens, with 4 dams per treatment group. Mice were sacrificed 6 hours after treatment on E17.5. Cervices and uteri were collected for molecular analysis. RESULTS Exposure to VP significantly increased the expression of defensin 1 compared to Replens (P < .01) on E17.5. Neither VP nor 17P altered the expression of uterine contraction-associated proteins, progesterone-mediated regulators of uterine quiescence, microRNA involved in uterine contractility, or pathways involved in cervical remodeling. In addition, neither agent had an effect on immune cell trafficking or collagen content in the cervix. CONCLUSION Neither VP nor 17P had any effect on the studied pathways known to be involved in uterine contractility or quiescence. In the cervix, neither VP nor 17P altered pathways demonstrated to be involved in cervical remodeling. Administration of VP was noted to increase the expression of the antimicrobial protein defensin 1. Whether this molecular change from VP results in a functional effect and is a key mechanism by which VP prevents PTB requires further study.
Collapse
|
18
|
Payne KJ, Clyde LA, Weldon AJ, Milford TA, Yellon SM. Residency and activation of myeloid cells during remodeling of the prepartum murine cervix. Biol Reprod 2012; 87:106. [PMID: 22914314 DOI: 10.1095/biolreprod.112.101840] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Remodeling of the cervix is a critical early component of parturition and resembles an inflammatory process. Infiltration and activation of myeloid immune cells along with production of proinflammatory mediators and proteolytic enzymes are hypothesized to regulate cervical remodeling as pregnancy nears term. The present study standardized an approach to assess resident populations of immune cells and phenotypic markers of functional activities related to the mechanism of extracellular matrix degradation in the cervix in preparation for birth. Analysis of cells from the dispersed cervix of mice that were nonpregnant or pregnant (Days 15 and 18 postbreeding) by multicolor flow cytometry indicated increased total cell numbers with pregnancy as well as increased numbers of macrophages, the predominant myeloid cell, by Day 18, the day before birth. The number of activated macrophages involved in matrix metalloproteinase induction (CD147) and signaling for matrix adhesion (CD169) significantly increased by the day before birth. Expression of the adhesion markers CD54 and CD11b by macrophages decreased in the cervix by Day 18 versus that on Day 15 or in nonpregnant mice. The census of cells that expressed the migration marker CD62L was unaffected by pregnancy. The data suggest that remodeling of the cervix at term in mice is associated with recruitment and selective activation of macrophages that promote extracellular matrix degradation. Indices of immigration and activities by macrophages may thus serve as markers for local immune cell activity that is critical for ripening of the cervix in the final common mechanism for parturition at term.
Collapse
Affiliation(s)
- Kimberly J Payne
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | | | | | | | | |
Collapse
|
19
|
Li B, Sheng X, Song M, Zhang H, Weng J, Zhang M, Hu X, Zhou J, Xu M, Weng Q, Watanabe G, Taya K. Expression of nerve growth factor and its receptors TrkA and p75 in the uterus of wild female ground squirrel (Citellus dauricus Brandt). Gen Comp Endocrinol 2012; 176:62-9. [PMID: 22226760 DOI: 10.1016/j.ygcen.2011.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 12/04/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
In this study, we investigated the presence of nerve growth factor (NGF) and its receptors tyrosine kinase A (TrkA) and p75 in the uterus of the wild ground squirrels during the estrous period, early pregnancy and non-breeding period. In the estrous period and early pregnancy, NGF and TrkA were immunolocalized in stromal cells, luminal epithelial cells, glandular cells and smooth muscle cells whereas in the non-breeding period, both of them were detected only in luminal epithelial cells and glandular cells, but not in stromal cells or smooth muscle cells. Stronger immunostaining of NGF and TrkA was observed in luminal epithelial cells and glandular cells in the estrous period and early pregnancy as compared to the non-breeding period. p75 was immunolocalized only in luminal epithelial and glandular cells during the estrous period, early pregnancy and non-breeding period. The intensity of the immunohistochemical signals for p75 did not vary significantly in the estrous period, early pregnancy and non-breeding period. The mean mRNA levels of NGF and TrkA and p75 were significantly higher in the estrous period and early pregnancy as compared to the non-breeding period. Besides, plasma estradiol-17β and progesterone concentrations were higher in the estrous period and early pregnancy than in the non-breeding period, suggesting that the expression patterns of NGF and TrkA are correlated with changes in plasma estradiol-17β and progesterone concentrations. These results indicate that NGF and its receptor TrkA may be involved in the regulation of seasonal changes in the uterine functions of wild female ground squirrels.
Collapse
Affiliation(s)
- Ben Li
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
WENG J, LI B, SHENG X, ZHANG H, HU X, ZHOU J, XU M, WENG Q, WATANABE G, TAYA K. Seasonal Changes in Immunoreactivity of Vascular Endothelial Factor and its Receptors VEGFR1 and VEGFR2 in the Uterus of Wild Ground Squirrels ( Citellus dauricus Brandt). J Reprod Dev 2012; 58:537-43. [DOI: 10.1262/jrd.2012-024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jiaju WENG
- School of Basic Medical Science, Peking University, Beijing 100083, PR China
- School of Basic Medical Science, Peking University, Beijing 100083, PR China
| | - Ben LI
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xia SHENG
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Haolin ZHANG
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xiao HU
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jiao ZHOU
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Meiyu XU
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qiang WENG
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Gen WATANABE
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Kazuyoshi TAYA
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
21
|
Yellon SM, Oshiro BT, Chhaya TY, Lechuga TJ, Dias RM, Burns AE, Force L, Apostolakis EM. Remodeling of the cervix and parturition in mice lacking the progesterone receptor B isoform. Biol Reprod 2011; 85:498-502. [PMID: 21613631 DOI: 10.1095/biolreprod.111.091983] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Withdrawal of progestational support for pregnancy is part of the final common pathways for parturition, but the role of nuclear progesterone receptor (PGR) isoforms in this process is not known. To determine if the PGR-B isoform participates in cervical remodeling at term, cervices were obtained from mice lacking PGR-B (PGR-BKO) and from wild-type (WT) controls before or after birth. PGR-BKO mice gave birth to viable pups at the same time as WT controls during the early morning of Day 19 postbreeding. Morphological analyses indicated that by the day before birth, cervices from PGR-BKO and WT mice had increased in size, with fewer cell nuclei/area as well as diminished collagen content and structure, as evidenced by optical density of picrosirius red-stained sections, compared to cervices from nonpregnant mice. Moreover, increased numbers of resident macrophages, but not neutrophils, were found in the prepartum cervix of PGR-BKO compared to nonpregnant mice, parallel to findings in WT mice. These results suggest that PGR-B does not contribute to the growth or degradation of the extracellular matrix or proinflammatory processes associated with recruitment of macrophages in the cervix leading up to birth. Rather, other receptors may contribute to the progesterone-dependent mechanism that promotes remodeling of the cervix during pregnancy and in the proinflammatory process associated with ripening before parturition.
Collapse
Affiliation(s)
- Steven M Yellon
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Clyde LA, Lechuga TJ, Ebner CA, Burns AE, Kirby MA, Yellon SM. Transection of the pelvic or vagus nerve forestalls ripening of the cervix and delays birth in rats. Biol Reprod 2010; 84:587-94. [PMID: 21106964 DOI: 10.1095/biolreprod.110.086207] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Innervation of the cervix is important for normal timing of birth because transection of the pelvic nerve forestalls birth and causes dystocia. To discover whether transection of the parasympathetic innervation of the cervix affects cervical ripening in the process of parturition was the objective of the present study. Rats on Day 16 of pregnancy had the pelvic nerve (PnX) or the vagus nerve (VnX) or both pathways (PnX+VnX) transected, sham-operated (Sham) or nonpregnant rats served as controls. Sections of fixed peripartum cervix were stained for collagen or processed by immunohistochemistry to identify macrophages and nerve fibers. All Sham controls delivered by the morning of Day 22 postbreeding, while births were delayed in more than 75% of neurectomized rats by more than 12 h. Dystocia was evident in more than 25% of the PnX and PnX+VnX rats. Moreover, on prepartum Day 21, serum progesterone was increased severalfold in neurectomized versus Sham rats. Assessments of cell nuclei counts indicated that the cervix of neurectomized rats and Sham controls had become equally hypertrophied compared to the unripe cervix in nonpregnant rats. Collagen content and structure were reduced in the cervix of all pregnant rats, whether neurectomized or Shams, versus that in nonpregnant rats. Stereological analysis of cervix sections found reduced numbers of resident macrophages in prepartum PnX and PnX+VnX rats on Day 21 postbreeding, as well as in VnX rats on Day 22 postbreeding compared to that in Sham controls. Finally, nerve transections blocked the prepartum increase in innervation that occurred in Sham rats on Day 21 postbreeding. These findings indicate that parasympathetic innervation of the cervix mediates local inflammatory processes, withdrawal of progesterone in circulation, and the normal timing of birth. Therefore, pelvic and vagal nerves regulate macrophage immigration and nerve fiber density but may not be involved in final remodeling of the extracellular matrix in the prepartum cervix. These findings support the contention that immigration of immune cells and enhanced innervation are involved in processes that remodel the cervix and time parturition.
Collapse
Affiliation(s)
- Lindsey A Clyde
- Department of Physiology, Pathology, and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Yellon SM, Grisham LA, Rambau GM, Lechuga TJ, Kirby MA. Pregnancy-related changes in connections from the cervix to forebrain and hypothalamus in mice. Reproduction 2010; 140:155-64. [PMID: 20453158 DOI: 10.1530/rep-10-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The transneuronal tracer pseudorabies virus was used to test the hypothesis that connections from the cervix to the forebrain and hypothalamus are maintained with pregnancy. The virus was injected into the cervix of nonpregnant or pregnant mice, and, after 5 days, virus-labeled cells and fibers were found in specific forebrain regions and, most prominently, in portions of the hypothalamic paraventricular nucleus. With pregnancy, fewer neurons and fibers were evident in most brain regions compared to that in nonpregnant mice. In particular, little or no virus was found in the medial and ventral parvocellular subdivisions, anteroventral periventricular nucleus, or motor cortex in pregnant mice. By contrast, labeling of virus was sustained in the dorsal hypothalamus and suprachiasmatic nucleus in all groups. Based upon image analysis of digitized photomicrographs, the area with label in the rostral and medial parvocellular paraventricular nucleus and magnocellular subdivisions was significantly reduced in mice whose cervix was injected with virus during pregnancy than in nonpregnant mice. The findings indicate that connections from the cervix to brain regions that are involved in sensory input and integrative autonomic functions are reduced during pregnancy. The findings raise the possibility that remaining pathways from the cervix to the forebrain and hypothalamus may be important for control of pituitary neuroendocrine secretion, as well as for effector functions in the cervix as pregnancy nears term.
Collapse
Affiliation(s)
- Steven M Yellon
- Departments of Physiology, Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California 92354, USA.
| | | | | | | | | |
Collapse
|
25
|
Kirby MA, Groves MM, Yellon SM. Retrograde tracing of spinal cord connections to the cervix with pregnancy in mice. Reproduction 2010; 139:645-53. [PMID: 19965985 PMCID: PMC4242584 DOI: 10.1530/rep-09-0361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In contrast to the uterus, the cervix is well innervated during pregnancy and the density of nerve fibers increases before birth. To assess neural connections between the cervix and the spinal cord, the cervix of pregnant mice was injected with the trans-synaptic retrograde neural tract tracer pseudorabies virus (PRV). After 5 days, the virus was present in nerve cells and fibers in specific areas of the sensory, autonomic, and motor subdivisions of the thoracolumbar spinal cord. In nonpregnant controls, the virus was predominantly distributed in laminae I-III in the dorsal gray sensory areas with the heaviest label in the substantia gelatinosa compared with the autonomic or motor areas. Labeled cells and processes were sparse in other regions, except for a prominent cluster in the intermediolateral column (lamina VII). Photomicrographs of spinal cord sections were digitized, and the total area with the virus was estimated. Compared with nonpregnant controls, the area with PRV was significantly decreased in all the spinal cord subdivisions in pregnant mice except in the intermediolateral column. However, areas with the virus were equivalent in mice injected with PRV at 4 days or 1 day before birth. These findings suggest that the predominant innervation of the murine cervix is from the sensory regions of the thoracolumbar spinal cord, and that these connections diminish with pregnancy. The results raise the possibility that the remaining connections from sensory and autonomic subdivisions, particularly the intermediolateral column, of the thoracolumbar spinal cord may be important for increased density of nerve fibers in the cervix as pregnancy nears term.
Collapse
Affiliation(s)
- Michael A Kirby
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California 92350, USA
| | | | | |
Collapse
|
26
|
Boyd JW, Lechuga TJ, Ebner CA, Kirby MA, Yellon SM. Cervix remodeling and parturition in the rat: lack of a role for hypogastric innervation. Reproduction 2009; 137:739-48. [PMID: 19158235 PMCID: PMC4242588 DOI: 10.1530/rep-08-0507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hypogastric nerve is a major pathway innervating the uterine cervix, yet its contribution to the processes of cervical ripening and parturition is not known. The main objective of this study was to determine the effect of hypogastric nerve transection on remodeling of the cervix and timing of birth. As an initial goal, processes associated with remodeling of the peripartum cervix were studied. The cervix was obtained from time-dated pregnant rats on days 15, 19, 21, and 21.5 of pregnancy, and post partum on the day of birth (day 22). The cervix was excised, post-fixed overnight, and sections stained to evaluate collagen content and structure or processed by immunohistochemistry to identify macrophages or nerve fibers. The census of macrophages and density of nerve fibers in the cervix peaked on day 21, the day before birth, and then declined post partum. These results replicate in time course and magnitude previous studies in mice. To address the main objective, the hypogastric nerve was bilaterally transected on day 15 post-breeding; sham-operated rats served as controls. Pups were born in both groups at normal term. Transection of the hypogastric nerves did not affect remodeling of collagen or the census of macrophages or the density of nerve fibers in the cervix. These findings support the contention that enhanced innervation and immigration of immune cells are associated with remodeling of the cervix and parturition, but that a neural pathway other than the hypogastric nerve may participate in the process of cervical ripening.
Collapse
Affiliation(s)
- Jonathan W Boyd
- Departments of Physiology, Pathology and Human Anatomy, Pediatrics Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
27
|
Yellon SM, Burns AE, See JL, Lechuga TJ, Kirby MA. Progesterone withdrawal promotes remodeling processes in the nonpregnant mouse cervix. Biol Reprod 2009; 81:1-6. [PMID: 19228593 DOI: 10.1095/biolreprod.108.074997] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Prepartum cervical ripening is associated with remodeling of collagen structure and with inflammation. Progesterone withdrawal is critical for parturition, but the effects of progesterone decline on cervical morphology are unknown. The present study tested the hypothesis that progesterone withdrawal promotes processes associated with remodeling of the cervix. Adult, virgin, female C57BL/6 mice received silastic capsules with oil vehicle or estradiol plus progesterone to parallel concentrations in circulation during pregnancy. After 17 days of estradiol and progesterone treatment, the progesterone implant was removed from one group. Mice in each group were killed 15, 18, or 19 days after placement of capsules. Sections of cervix were stained for collagen, and the densities of macrophages, neutrophils, and area with nerve fibers were assessed. Treatment with gonadal steroids promoted hypertrophy of the cervix, as well as reduced collagen and increased area with nerve fibers compared with vehicle-treated controls. Removal of the progesterone capsule did not affect hypertrophy or innervation, but it did reduce collagen. By contrast, significantly more macrophages and neutrophils were present in the cervix on Days 18 and 19 (i.e., by 24 and 48 h after withdrawal of the progesterone capsule); the immune cell census was equivalent to that in vehicle controls. Findings indicate that gonadal steroids, comparable to those during pregnancy, promote hypertrophy and suppress immigration of immune cells in the cervix. Therefore, in a nonpregnant murine model for parturition, progesterone withdrawal is suggested to recruit immune cells and processes that remodel the cervix.
Collapse
Affiliation(s)
- Steven M Yellon
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California, USA.
| | | | | | | | | |
Collapse
|
28
|
Yellon SM, Ebner CA, Elovitz MA. Medroxyprogesterone acetate modulates remodeling, immune cell census, and nerve fibers in the cervix of a mouse model for inflammation-induced preterm birth. Reprod Sci 2008; 16:257-64. [PMID: 19087974 DOI: 10.1177/1933719108325757] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To determine whether a progestational agent can modify inflammation-induced preterm cervical ripening, mice on day 15 of gestation were given an intrauterine injection of (1) saline, (2) lipopolysaccharide, (3) an intramuscular injection of medroxyprogesterone acetate alone prior to lipopolysaccharide, or (4) medroxyprogesterone acetate alone. Cervices were obtained 6 hours later, then fixed, sectioned, and processed to stain collagen structure or to identify immune cells or nerve fibers. Cervical remodeling was induced by lipopolysaccharide treatment compared with that in saline controls, an effect blocked by medroxyprogesterone acetate pretreatment. Moreover, lipopolysaccharide reduced macrophages and enhanced neutrophils in the cervix, effects also forestalled by medroxyprogesterone acetate pretreatment. Although the density of nerve fibers was not altered by lipopolysaccharide, medroxyprogesterone acetate reduced innervation in the cervix. Thus, progestational treatment forestalls the inflammation-induced reduction in collagen structure and immune cell traffic through a mechanism that is independent of nerve fiber density. These findings raise the possibility that progestational treatment may regulate ripening of the cervix early in the process leading to preterm birth.
Collapse
Affiliation(s)
- Steven M Yellon
- Department of Physiology, Pediatrics and Obstetrics/Gynecology, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | | | | |
Collapse
|
29
|
Liu B, Tong C, Eisenach JC. Pregnancy increases excitability of mechanosensitive afferents innervating the uterine cervix. Anesthesiology 2008; 108:1087-92. [PMID: 18497610 PMCID: PMC3876482 DOI: 10.1097/aln.0b013e31817302e0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Labor pain derives primarily from stimulation of afferents innervating the uterine cervix and lower uterine segment. The authors have previously shown that the excitability of these afferents is regulated by sex hormones and test in this study whether pregnancy also alters their excitability. METHODS After animal care committee approval, Sprague-Dawley rats (nonpregnant, pregnant days 17 and 21) were anesthetized, and two metal rods were placed through the cervix for distension. The right hypogastric nerve was dissected and carefully teased until recording from a single unit was obtained. Spontaneous activity and the response to a graded distension (20-80 g) were recorded for off-line analysis. RESULTS A total of 151 fiber units were recorded. Pregnancy was associated with an increase in spontaneous nerve activity in the absence of a mechanical stimulus (median of 0.98 and 1.56 Hz from pregnant days 17 and 21, respectively, compared with 0.45 Hz in nonpregnant; P < 0.01). The proportion of fibers responding to the weakest stimulus (20 g) was significantly greater in pregnant than in nonpregnant animals. The response to graded distension differed significantly among groups, with day 21 > day 17 > nonpregnant. CONCLUSIONS Afferents that innervate the uterine cervix sprout into this tissue during late pregnancy, and estrogen increases excitability of these mechanosensitive afferents. Here, the authors show that excitability also increases during pregnancy. These data suggest that, close to the onset of labor, there is an increased input to the spinal cord from cervical distension and an increased depolarization of afferent terminals in the cervix, effects that could influence pain and the progress of labor.
Collapse
|
30
|
Yellon SM, Ebner CA, Sugimoto Y. Parturition and recruitment of macrophages in cervix of mice lacking the prostaglandin F receptor. Biol Reprod 2008; 78:438-44. [PMID: 18003949 PMCID: PMC4237585 DOI: 10.1095/biolreprod.107.063404] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Parturition does not occur in transgenic mice lacking the prostaglandin F receptor (Ptgfr(-/-)) because luteolysis is forestalled and progesterone production persists. Ovariectomy of pregnant Ptgfr(-/-) mice leads to a decline in circulating progesterone and delivery of live pups. The objective of the present study was to test the hypothesis that immigration of macrophages and increased innervation of the cervix of Ptgfr(-/-) mice was associated with ripening and parturition. The cervix of pregnant Ptgfr(-/-) mice was studied on Days 15-21 after breeding; additional groups were ovariectomized on Day 19 of pregnancy, and the cervix obtained on Day 20 of pregnancy before birth or the next day at about 24 h after birth. On Days 18-19 of pregnancy, macrophage numbers and nerve fiber density increased more than 3-fold compared with findings in nonpregnant or Day 15 or 21 pregnant Ptgfr(-/-) mice. The magnitude and time course of these changes were comparable to those found in wild-type controls that delivered on Day 19 after breeding. Thus, the mechanism regulating macrophage immigration, innervation, and cervical remodeling in Ptgfr(-/-) mice with delayed parturition is similar to wild-type controls that deliver at term. By contrast, ovariectomy forestalled the decrease in cervical macrophages in Ptgfr(-/-) mice. By Day 21 after breeding, macrophage numbers more than double those after ovariectomy, relative to those found in pregnant Ptgfr(-/-) mice, whereas nerve fiber density was the same regardless of birth. Density of collagen structure in these mice directly matched macrophage traffic in the cervix. The findings indicate that the prostaglandin F(2alpha) receptor and progesterone withdrawal are a necessary part of the final common pathway for ripening of the cervix and the process of parturition.
Collapse
Affiliation(s)
- Steven M Yellon
- Department of Physiology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | | | | |
Collapse
|