1
|
Wang G, Wu X. Ostial lesion of the anterior descending coronary artery treated via Szabo technique supported by stent boost imaging: a case report. J Cardiothorac Surg 2021; 16:134. [PMID: 34001176 PMCID: PMC8130404 DOI: 10.1186/s13019-021-01516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Stenosis at the opening and bifurcation of the anterior descending branch and circumflex branch around the end of the left main trunk is difficult to repair. Accurate positioning of a stent is the key problem. Case presentations Here we report the case of a 61-year-old man who suffered from paroxysmal chest pain for 1 year, without history of diabetes or hypertension. The coronary computed tomography showed mixed plaques in the proximal part of the anterior descending artery, with stenosis severe at 80–90%. The emergency coronary angiography showed occlusion of the anterior descending artery. During percutaneous coronary intervention, a drug-eluting stent was implanted into the anterior descending artery using the Szabo technique, supported by stent boost (StentBoost) imaging to pinpoint the location of the lesion. The patient’s paroxysmal chest pain was relieved after the procedure. Conclusion We used StentBoost to verify the accuracy of stent placement and the Szabo technique to rectify long-term coronary stenosis, which achieved satisfactory results. Combining the Szabo technique with StentBoost imaging was helpful to accurately evaluate the area and locate the stent when treating this ostial lesion of the anterior descending coronary artery.
Collapse
Affiliation(s)
- Guangliang Wang
- Department of Cardiology, Jiren Hospital of Far Eastern Horizon, Anda, P. R. China
| | - Xuemei Wu
- Department of Pediatric Neurology, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130000, Jilin Province, China.
| |
Collapse
|
2
|
Toong DWY, Toh HW, Ng JCK, Wong PEH, Leo HL, Venkatraman S, Tan LP, Ang HY, Huang Y. Bioresorbable Polymeric Scaffold in Cardiovascular Applications. Int J Mol Sci 2020; 21:E3444. [PMID: 32414114 PMCID: PMC7279389 DOI: 10.3390/ijms21103444] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Advances in material science and innovative medical technologies have allowed the development of less invasive interventional procedures for deploying implant devices, including scaffolds for cardiac tissue engineering. Biodegradable materials (e.g., resorbable polymers) are employed in devices that are only needed for a transient period. In the case of coronary stents, the device is only required for 6-8 months before positive remodelling takes place. Hence, biodegradable polymeric stents have been considered to promote this positive remodelling and eliminate the issue of permanent caging of the vessel. In tissue engineering, the role of the scaffold is to support favourable cell-scaffold interaction to stimulate formation of functional tissue. The ideal outcome is for the cells to produce their own extracellular matrix over time and eventually replace the implanted scaffold or tissue engineered construct. Synthetic biodegradable polymers are the favoured candidates as scaffolds, because their degradation rates can be manipulated over a broad time scale, and they may be functionalised easily. This review presents an overview of coronary heart disease, the limitations of current interventions and how biomaterials can be used to potentially circumvent these shortcomings in bioresorbable stents, vascular grafts and cardiac patches. The material specifications, type of polymers used, current progress and future challenges for each application will be discussed in this manuscript.
Collapse
Affiliation(s)
- Daniel Wee Yee Toong
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore; (D.W.Y.T.); (L.P.T.)
| | - Han Wei Toh
- National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore; (H.W.T.); (J.C.K.N.); (P.E.H.W.)
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore;
| | - Jaryl Chen Koon Ng
- National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore; (H.W.T.); (J.C.K.N.); (P.E.H.W.)
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore;
| | - Philip En Hou Wong
- National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore; (H.W.T.); (J.C.K.N.); (P.E.H.W.)
- Duke-NUS Medical School, National University of Singapore, 8 College Road, Singapore 169857, Singapore
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore;
| | - Subramanian Venkatraman
- Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore;
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore; (D.W.Y.T.); (L.P.T.)
| | - Hui Ying Ang
- National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore; (H.W.T.); (J.C.K.N.); (P.E.H.W.)
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore;
| | - Yingying Huang
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore; (D.W.Y.T.); (L.P.T.)
| |
Collapse
|
3
|
Coppel R, Lagache M, Finet G, Rioufol G, Gómez A, Dérimay F, Malvé M, Yazdani SK, Pettigrew RI, Ohayon J. Influence of Collaterals on True FFR Prediction for a Left Main Stenosis with Concomitant Lesions: An In Vitro Study. Ann Biomed Eng 2019; 47:1409-1421. [DOI: 10.1007/s10439-019-02235-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
|
4
|
Atay M, Açıkgöz B, Saydam O, Kavala AA, Türkyılmaz S, Bakuy V, Gürsoy M, Gülmalıyev C, Ungan İ, Akgül A. Koroner bypass cerrahisi geçiren hastalarda 1-yıllık mortaliteyi öngörmede lojistik EuroSCORE, SYNTAX ve EuroSCORE II’nin karşılaştırılması. CUKUROVA MEDICAL JOURNAL 2018. [DOI: 10.17826/cumj.422290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
5
|
Acute, total occlusion of the left main stem: coronary intervention options, outcomes, and recommendations. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2018; 14:233-239. [PMID: 30302098 PMCID: PMC6173093 DOI: 10.5114/aic.2018.78325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/19/2018] [Indexed: 11/17/2022] Open
Abstract
Introduction Acute, total occlusion of the unprotected left main stem (uLMo) in acute coronary syndrome (ACS) patients is a catastrophic event often accompanied by sudden cardiac death (SCD) and/or cardiogenic shock (CS) with high mortality rates and limited methods of successful treatment. Emergent, surgical and percutaneous revascularization has been reported before, yet comprehensive data remains scarce. Aim To examine emergency percutaneous coronary intervention (PCI) outcomes in ACS cases presenting with uLMo. Material and methods Data on 23 subjects undergoing primary PCI in uLMo cases were analyzed. The primary end-point was in-hospital death; secondary end-points were successful salvage of coronary anatomy and 90-day major cardiac adverse events (MACE). Results About 40% of LM occlusion cases presented following successful on-site cardio-pulmonary resuscitation (CPR). Of all patients arriving for treatment the occluded LM was successfully opened and stented in ~90% of cases. CS was present in > 85% of cases, and circulatory support in the form of intra-aortic balloon pump and/or extracorporeal membrane oxygenation systems was applied in every eligible case (~80%). The in-hospital death rate was 56%, mostly including individuals requiring prior CPR. At 6 months, additional MACE rates were low at 8.7%. Conclusions We found that uLMo ACS cases often present with preceding CPR and mostly in manifest CS. Coronary salvage is generally successful, yet uLMo even with optimal present day complex treatment yields quite high mortality rates. This is especially true for patients receiving prior CPR. In surviving patients, however, 6-month MACE rates are acceptable.
Collapse
|
6
|
Huang L, Zhang L, Li T, Liu YW, Wang Y, Liu BJ. Human Plasma Metabolomics Implicates Modified 9-cis-Retinoic Acid in the Phenotype of Left Main Artery Lesions in Acute ST-Segment Elevated Myocardial Infarction. Sci Rep 2018; 8:12958. [PMID: 30154509 PMCID: PMC6113282 DOI: 10.1038/s41598-018-30219-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/23/2018] [Indexed: 12/18/2022] Open
Abstract
The detection of left main coronary artery disease (LMCAD) is crucial before ST-segment elevated myocardial infarction (STEMI) or sudden cardiac death. The aim of this study was to identify characteristic metabolite modifications in the LMCAD phenotype, using the metabolomics technique. Metabolic profiles were generated based on ultra-performance liquid chromatography and mass spectrometry, combined with multivariate statistical analysis. Plasma samples were collected prospectively from a propensity-score matched cohort including 44 STEMI patients (22 consecutive LMCAD and 22 non-LMCAD), and 22 healthy controls. A comprehensive metabolomics data analysis was performed with Metaboanalyst 3.0 version. The retinol metabolism pathway was shown to have the strongest discriminative power for the LMCAD phenotype. According to biomarker analysis through receiver-operating characteristic curves, 9-cis-retinoic acid (9cRA) dominated the first page of biomarkers, with area under the curve (AUC) value 0.888. Next highest were a biomarker panel consisting of 9cRA, dehydrophytosphingosine, 1H-Indole-3-carboxaldehyde, and another seven variants of lysophosphatidylcholines, exhibiting the highest AUC (0.933). These novel data propose that the retinol metabolism pathway was the strongest differential pathway for the LMCAD phenotype. 9cRA was the most critical biomarker of LMCAD, and a ten-metabolite plasma biomarker panel, in which 9cRA remained the weightiest, may help develop a potent predictive model for LMCAD in clinic.
Collapse
Affiliation(s)
- Lei Huang
- Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, P.R. China.,Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, P.R. China
| | - Lei Zhang
- Tianjin Institute of Hepatobiliary Disease, Tianjin, P.R. China.,Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, P.R. China.,Department of Clinical Laboratory, Tianjin Third Central Hospital, Tianjin, P.R. China
| | - Tong Li
- Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China. .,Tianjin Institute of Hepatobiliary Disease, Tianjin, P.R. China. .,Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, P.R. China.
| | - Ying-Wu Liu
- Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, P.R. China.,Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, P.R. China
| | - Yu Wang
- Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, P.R. China.,Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, P.R. China
| | - Bo-Jiang Liu
- Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, P.R. China.,Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, P.R. China
| |
Collapse
|