1
|
Rejeki PS, Baskara PG, Herawati L, Pranoto A, Setiawan HK, Lesmana R, Halim S. Moderate-intensity exercise decreases the circulating level of betatrophin and its correlation among markers of obesity in women. J Basic Clin Physiol Pharmacol 2022; 33:769-777. [PMID: 35286051 DOI: 10.1515/jbcpp-2021-0393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Positive energy homeostasis due to overnutrition and a sedentary lifestyle triggers obesity. Obesity has a close relationship with elevated levels of betatrophin and may increase the risk of developing metabolic syndrome. Therefore, lifestyle modification through a nonpharmacological approach based on physical exercise is the right strategy in lowering betatrophin levels. This study aimed to analyze the effect of moderate-intensity interval and continuous exercises on decreased betatrophin levels and the association between betatrophin levels and obesity markers in women. METHODS A total of 30 women aged 20-24 years old were randomly divided into three groups. Measurement of betatrophin levels using Enzyme-Linked Immunosorbent Assay (ELISA). Data analysis techniques used were one-way ANOVA and parametric linear correlation. RESULTS The results showed that the average levels of betatrophin pre-exercise were 200.40 ± 11.03 pg/mL at CON, 203.07 ± 42.48 pg/mL at MIE, 196.62 ± 21.29 pg/mL at MCE, and p=0.978. Average levels of betatrophin post-exercise were 226.65 ± 18.96 pg/mL at CON, 109.31 ± 11.23 pg/mL at MIE, 52.38 ± 8.18 pg/mL at MCE, and p=0.000. Pre-exercise betatrophin levels were positively correlated with age, BMI, FM, WHR, FBG, and PBF (p≤0.001). CONCLUSIONS Our study showed that betatrophin levels are decreased by 10 min post-MIE and post-MCE. However, moderate-intensity continuous exercise is more effective in lowering betatrophin levels than moderate-intensity interval exercise. In addition, pre-exercise betatrophin levels also have a positive correlation with obesity markers.
Collapse
Affiliation(s)
- Purwo Sri Rejeki
- Department of Medical Physiology and Biochemistry, Physiology Division, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Pradika Gita Baskara
- Sport Health Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Lilik Herawati
- Department of Medical Physiology and Biochemistry, Physiology Division, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Adi Pranoto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Hayuris Kinandita Setiawan
- Department of Medical Physiology and Biochemistry, Physiology Division, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Shariff Halim
- Clinical Research Centre, Management and Science University, Shah Alam, Malaysia
| |
Collapse
|
2
|
Andarianto A, Rejeki P, Sakina, Pranoto A, Seputra TA, Sugiharto, Miftahussurur M. Inflammatory markers in response to interval and continuous exercise in obese women. COMPARATIVE EXERCISE PHYSIOLOGY 2022; 18:135-142. [DOI: 10.3920/cep210038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Obesity is strongly associated with the degree of inflammation characterised by proinflammatory cytokines, such as tumour necrosis factor-α (TNF-α). Lifestyle modification with exercise is the right strategy because it can stimulate interleukin 6 (IL-6) secretion which acts as an anti-inflammatory. This study aimed to analyse the response of interval and continuous exercise to inflammatory markers in obese women. Twenty-four women participated in this study and were randomly divided into 3 groups: CONG (n=8, control group without any intervention): MCEG (n=8, continuous exercise group) and MIEG (n=8, interval exercise group). ELISA was used to measure the levels of IL-6 and TNF-α, pre-exercise and post-exercise. The data were analysed using the paired sample t-test. The mean levels of TNF-α, pre-exercise and post-exercise, were 19.35±2.73 vs 19.36±2.23 pg/ml (P=0.989) in CONG, 19.42±2.79 vs 16.63±0.82 pg/ml (P=0.017) in MCEG, and 19.46±3.08 vs 16.96±2.11 pg/ml (P=0.079) in MIEG. Mean levels of IL-6, pre-exercise and post-exercise, were 7.56±2.88 vs 7.66±4.12 pg/ml (P=0.957) for CONG, 7.68±3.41 vs 13.97±2.38 pg/ml (P=0.001) for MCEG, and 7.78±1.99 vs 13.66±3.55 pg/ml (P=0.001) for MIEG. We concluded that interval and continuous exercise decreased pro-inflammatory and increased anti-inflammatory cytokines.
Collapse
Affiliation(s)
- A. Andarianto
- Sport Health Science, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
| | - P.S. Rejeki
- Sport Health Science, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
- Medical Program, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
| | - Sakina
- Medical Program, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya Indonesia
| | - A. Pranoto
- Medical Science, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
| | - T.W. Aga Seputra
- Sport Health Science, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, 60131 Surabaya, Indonesia
| | - Sugiharto
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, Jl. Semarang No.5, 65145 Malang, Indonesia
| | - M. Miftahussurur
- Institute of Tropical Disease, Universitas Airlangga, 60286 Surabaya, Indonesia
- Gastroentero-Hepatology Division, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Jl. Prof. Dr. Moestopo No. 6-8, 60286 Surabaya, Indonesia
| |
Collapse
|
3
|
Zhao C, Li G, Li J. Non-coding RNAs and Cardiac Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:247-258. [PMID: 32285416 DOI: 10.1007/978-981-15-1671-9_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aging is an important risk factor for cardiovascular diseases. Aging increasing the morbidity and mortality in cardiovascular disease patients. With the society is aging rapidly in the world, medical burden of aging-related cardiovascular diseases increasing drastically. Hence, it is urgent to explore the underlying mechanism and treatment of cardiac aging. Noncoding RNAs (ncRNAs, including microRNAs, long noncoding RNAs and circular RNAs) have been reported to be involved in many pathological processes, including cell proliferation, cell death differentiation, hypertrophy and aging in wide variety of cells and tissues. In this chapter, we will summarize the physiology and molecular mechanisms of cardiac aging. Then, the recent research advances of ncRNAs in cardiac aging will be provided. The lessons learned from ncRNAs and cardiac aging studies would bring new insights into the regulatory mechanisms ncRNAs as well as treatment of aging-related cardiovascular diseases.
Collapse
Affiliation(s)
- Cuimei Zhao
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guoping Li
- Cardiovascular Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|