1
|
Yadav A, Dabur R. Skeletal muscle atrophy after sciatic nerve damage: Mechanistic insights. Eur J Pharmacol 2024; 970:176506. [PMID: 38492879 DOI: 10.1016/j.ejphar.2024.176506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
Sciatic nerve injury leads to molecular events that cause muscular dysfunction advancement in atrophic conditions. Nerve damage renders muscles permanently relaxed which elevates intracellular resting Ca2+ levels. Increased Ca2+ levels are associated with several cellular signaling pathways including AMPK, cGMP, PLC-β, CERB, and calcineurin. Also, multiple enzymes involved in the tricarboxylic acid cycle and oxidative phosphorylation are activated by Ca2+ influx into mitochondria during muscle contraction, to meet increased ATP demand. Nerve damage induces mitophagy and skeletal muscle atrophy through increased sensitivity to Ca2+-induced opening of the permeability transition pore (PTP) in mitochondria attributed to Ca2+, ROS, and AMPK overload in muscle. Activated AMPK interacts negatively with Akt/mTOR is a highly prevalent and well-described central pathway for anabolic processes. Over the decade several reports indicate abnormal behavior of signaling machinery involved in denervation-induced muscle loss but end up with some controversial outcomes. Therefore, understanding how the synthesis and inhibitory stimuli interact with cellular signaling to control muscle mass and morphology may lead to new pharmacological insights toward understanding the underlying mechanism of muscle loss after sciatic nerve damage. Hence, the present review summarizes the existing literature on denervation-induced muscle atrophy to evaluate the regulation and expression of differential regulators during sciatic damage.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
2
|
Peña-Toledo MA, Luque E, LaTorre M, Jimena I, Leiva-Cepas F, Ruz-Caracuel I, Agüera E, Peña-Amaro J, Tunez I. The ultrastructure of muscle fibers and satellite cells in experimental autoimmune encephalomyelitis after treatment with transcranial magnetic stimulation. Ultrastruct Pathol 2022; 46:401-412. [PMID: 35994513 DOI: 10.1080/01913123.2022.2112330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
In this study, we investigated the effect of transcranial magnetic stimulation (TMS) on the ultrastructure of muscle fibers and satellite cells in rats with experimental autoimmune encephalomyelitis (EAE). EAE-induced animals were treated with TMS (60 Hz at 0.7 mT) for 2 hours in the morning, once a day, 5 days a week, for 3 weeks, starting on day 15 post-immunization. The rats were sacrificed on day 36 post-immunization, and the soleus muscles were evaluated by light microscopy and transmission electron microscopy. Findings were compared with a non-treated EAE group. Electron microscopy analysis showed the presence of degenerated mitochondria, autophagic vacuoles, and altered myofibrils in non-treated EAE group. This correlates with the presence of acid phosphatase activity in muscle fibers and core-targetoid lesions with desmin immunohistochemistry. Most myonuclei in the EAE group showed apoptotic features. In contrast, EAE induced-TMS treated animals had less ultrastructural changes in the mitochondria and the myofibrils, together with less frequent apoptotic nuclear features. Peripheral desmin+ protrusions, as a marker of active satellite cells, were significantly increased in TMS-treated group. This correlates ultrastructurally with the presence of active features in satellite cells in the TMS group. In conclusion, the attenuation of ultrastructural alterations in muscle fibers and activation response of satellite cells caused by EAE indicated that skeletal muscle had a regenerative response to TMS.
Collapse
Affiliation(s)
- María Angeles Peña-Toledo
- Dementia and Multiple Sclerosis Unit, Neurology Service, Reina Sofia University Hospital, Cordoba, Spain.,Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain
| | - Evelio Luque
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Manuel LaTorre
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Ignacio Jimena
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Fernando Leiva-Cepas
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.,Department of Pathology, Reina Sofía University Hospital, Córdoba, Spain
| | - Ignacio Ruz-Caracuel
- Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.,Department of Pathology, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Eduardo Agüera
- Dementia and Multiple Sclerosis Unit, Neurology Service, Reina Sofia University Hospital, Cordoba, Spain.,Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain
| | - J Peña-Amaro
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Isaac Tunez
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.,Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Ministery for Economy, Industry and Competitiveness, Madrid, Spain
| |
Collapse
|
3
|
Henze H, Jung MJ, Ahrens HE, Steiner S, von Maltzahn J. Skeletal muscle aging – Stem cells in the spotlight. Mech Ageing Dev 2020; 189:111283. [DOI: 10.1016/j.mad.2020.111283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023]
|
4
|
Lu X, Liang B, Li S, Chen Z, Chang W. Modulation of HOXA9 after skeletal muscle denervation and reinnervation. Am J Physiol Cell Physiol 2020; 318:C1154-C1165. [PMID: 32233950 DOI: 10.1152/ajpcell.00055.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Homeobox A9 (HOXA9), the expression of which is promoted by mixed lineage leukemia 1 (MLL1) and WD-40 repeat protein 5 (WDR5), is a homeodomain-containing transcription factor that plays an essential role in regulating stem cell activity. HOXA9 has been found to inhibit skeletal muscle regeneration and delay recovery after muscle wounding in aged mice, but little is known about its role in denervated/reinnervated muscles. We performed detailed time-dependent expression analyses of HOXA9 and its promoters, MLL1 and WDR5, in rat gastrocnemius muscles after the following three types of sciatic nerve surgeries: nerve transection (denervation), end-to-end repair (repair), and sham operation (sham). Then, the specific mechanisms of HOXA9 were detected in vitro by transfecting primary satellite cells with empty pIRES2-DsRed2, pIRES2-DsRed2-HOXA9, empty pPLK/GFP-Puro, and pPLK/GFP-Puro-HOXA9 small hairpin RNA (shRNA) plasmids. We found, for the first time, that HOXA9 protein expression simultaneously increased with increasing denervated muscle atrophy severity and that upregulated MLL1 and WDR5 expression was partly associated with denervation. Indeed, in vitro experiments revealed that HOXA9 inhibited myogenic differentiation, affected the best known atrophic signaling pathways, and promoted apoptosis but did not eliminate the differentiation potential of primary satellite cells. HOXA9 may promote denervated muscle atrophy by regulating the activity of satellite cells.
Collapse
Affiliation(s)
- Xiaomei Lu
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bingsheng Liang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuaijie Li
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhi Chen
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenkai Chang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Leiva-Cepas F, Jimena I, Ruz-Caracuel I, Luque E, Villalba R, Peña-Amaro J. Histology of skeletal muscle reconstructed by means of the implantation of autologous adipose tissue: an experimental study. Histol Histopathol 2019; 35:457-474. [PMID: 31523800 DOI: 10.14670/hh-18-163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to determine the histological characteristics of a skeletal muscle reconstructed by means of the implantation of autologous adipose tissue following an experimentally-induced volumetric muscle loss. A cylindrical piece in the belly of the rat anterior tibial muscle was removed. In the hole, inguinal subcutaneous adipose tissue of the same rat was grafted. Animals were sacrificed 7, 14, 21, 28 and 60 days posttransplantation. Histological, histochemical, immunohistochemical and morphometric techniques were used. At all times analyzed, the regenerative muscle fibers formed from the edges of the muscle tissue showed histological, histochemical and immunohistochemical differences in comparison with the control group. These differences are related to delays in the maturation process and are related to problems in reinnervation and disorientation of muscle fibers. The stains for MyoD and desmin showed that some myoblasts and myotubes seem to derive from the transplanted adipose tissue. After 60 days, the transplant area was 20% occupied by fibrosis and by 80% skeletal muscle. However, the neo-muscle was chaotically organized showing muscle fiber disorientation and centronucleated fibers with irregular shape and size. Our results support the hypothesis that, at least from a morphological point of view, autologous adipose tissue transplantation favors reconstruction following a volumetric loss of skeletal muscle by combining the inherent regenerative response of the organ itself and the myogenic differentiation of the stem cells present in the adipose tissue. However, in our study, the formed neo-muscle exhibited histological differences in comparison with the normal skeletal muscle.
Collapse
Affiliation(s)
- Fernando Leiva-Cepas
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain.,Research Group in Muscle Regeneration, University of Cordoba, Córdoba, Spain.,Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, Spain.,Present address: Department of Pathology, Reina Sofia University Hospital, Córdoba, Spain
| | - Ignacio Jimena
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain.,Research Group in Muscle Regeneration, University of Cordoba, Córdoba, Spain.,Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Ignacio Ruz-Caracuel
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain.,Research Group in Muscle Regeneration, University of Cordoba, Córdoba, Spain.,Present address: Department of Pathology, Ramón y Cajal University Hospital, Madrid, Spain
| | - Evelio Luque
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain.,Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Rafael Villalba
- Tissue of Establishment of the Center for Transfusion, Tissues and Cells, Córdoba, Spain
| | - Jose Peña-Amaro
- Research Group in Muscle Regeneration, University of Cordoba, Córdoba, Spain.,Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain.,Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain.
| |
Collapse
|