1
|
Liu AC, Shen Y, Serbinski CR, He H, Roman D, Endale M, Aschbacher-Smith L, King KA, Granadillo JL, López I, Krueger DA, Dye TJ, Smith DF, Hogenesch JB, Prada CE. Clinical and functional studies of MTOR variants in Smith-Kingsmore syndrome reveal deficits of circadian rhythm and sleep-wake behavior. HGG ADVANCES 2024; 5:100333. [PMID: 39030910 PMCID: PMC11342114 DOI: 10.1016/j.xhgg.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
Heterozygous de novo or inherited gain-of-function mutations in the MTOR gene cause Smith-Kingsmore syndrome (SKS). SKS is a rare autosomal dominant condition, and individuals with SKS display macrocephaly/megalencephaly, developmental delay, intellectual disability, and seizures. A few dozen individuals are reported in the literature. Here, we report a cohort of 28 individuals with SKS that represent nine MTOR pathogenic variants. We conducted a detailed natural history study and found pathophysiological deficits among individuals with SKS in addition to the common neurodevelopmental symptoms. These symptoms include sleep-wake disturbance, hyperphagia, and hyperactivity, indicative of homeostatic imbalance. To characterize these variants, we developed cell models and characterized their functional consequences. We showed that these SKS variants display a range of mechanistic target of rapamycin (mTOR) activities and respond to the mTOR inhibitor, rapamycin, differently. For example, the R1480_C1483del variant we identified here and the previously known C1483F are more active than wild-type controls and less responsive to rapamycin. Further, we showed that SKS mutations dampened circadian rhythms and low-dose rapamycin improved the rhythm amplitude, suggesting that optimal mTOR activity is required for normal circadian function. As SKS is caused by gain-of-function mutations in MTOR, rapamycin was used to treat several patients. While higher doses of rapamycin caused delayed sleep-wake phase disorder in a subset of patients, optimized lower doses improved sleep. Our study expands the clinical and molecular spectrum of SKS and supports further studies for mechanism-guided treatment options to improve sleep-wake behavior and overall health.
Collapse
Affiliation(s)
- Andrew C Liu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | - Yang Shen
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Carolyn R Serbinski
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Genetics, Genomics & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Hongzhi He
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Destino Roman
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mehari Endale
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Lindsey Aschbacher-Smith
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Katherine A King
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jorge L Granadillo
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Isabel López
- Pediatric Neurology Unit, Department of Neurology, Clínica Las Condes, Santiago, Chile
| | - Darcy A Krueger
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Thomas J Dye
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David F Smith
- Divisions of Pediatric Otolaryngology and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Otolaryngology Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - John B Hogenesch
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Carlos E Prada
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Genetics, Genomics & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Biancardi V, Patrone LGA, Vicente MC, Marques DA, Bicego KC, Funk GD, Gargaglioni LH. Prenatal fluoxetine has long lasting, differential effects on respiratory control in male and female rats. J Appl Physiol (1985) 2022; 133:371-389. [PMID: 35708704 DOI: 10.1152/japplphysiol.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT) is an important modulator of brain networks that control breathing. The selective serotonin reuptake inhibitor fluoxetine (FLX) is the first-line antidepressant drug prescribed during pregnancy. We investigated the effects of prenatal FLX on baseline breathing, ventilatory and metabolic responses to hypercapnia and hypoxia as well as number of brainstem 5-HT and tyrosine hydroxylase (TH) neurons of rats during postnatal development (P0-82). Prenatal FLX exposure of males showed a lower baseline that appeared in juveniles and remained in adulthood, with no sleep-wake state dependency. Prenatal FLX exposure of females did not affect baseline breathing. Juvenile male FLX rats showed increased CO2 and hypoxic ventilatory responses, normalizing by adulthood. Alterations in juvenile-FLX treated males were associated with greater number of 5-HT neurons in the ROB and RMAG. Adult FLX-exposed males showed greater number of 5-HT neurons in the RPA and TH neurons in the A5, while reduced number of TH neurons in A7. Prenatal FLX exposure of female rats was associated with greater hyperventilation induced by hypercapnia at P0-2 and juveniles whereas P12-14 and adult FLX (NREM sleep) rats showed an attenuation of the hypercapnic hyperventilation.FLX-exposed females had fewer 5-HT neurons in the RPA and reduced TH A6 density at P0-2; and greater number of TH neurons in the A7 at P12-14. These data indicate that prenatal FLX exposure affects the number of neurons of some monoaminergic regions in the brain and results in long lasting, sex specific changes in baseline breathing pattern and ventilatory responses to respiratory challenges.
Collapse
Affiliation(s)
- Vivian Biancardi
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Mariane C Vicente
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Danuzia A Marques
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, QC, Canada
| | - Kênia C Bicego
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Gregory D Funk
- Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| |
Collapse
|
3
|
Herhaus B, Kalin A, Gouveris H, Petrowski K. Mobile Heart Rate Variability Biofeedback Improves Autonomic Activation and Subjective Sleep Quality of Healthy Adults – A Pilot Study. Front Physiol 2022; 13:821741. [PMID: 35250623 PMCID: PMC8892186 DOI: 10.3389/fphys.2022.821741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/18/2022] [Indexed: 01/01/2023] Open
Abstract
Objective Restorative sleep is associated with increased autonomous parasympathetic nervous system activity that might be improved by heart rate variability-biofeedback (HRV-BF) training. Hence the aim of this study was to investigate the effect of a four-week mobile HRV-BF intervention on the sleep quality and HRV of healthy adults. Methods In a prospective study, 26 healthy participants (11 females; mean age: 26.04 ± 4.52 years; mean body mass index: 23.76 ± 3.91 kg/m2) performed mobile HRV-BF training with 0.1 Hz breathing over four weeks, while sleep quality, actigraphy and HRV were measured before and after the intervention. Results Mobile HRV-BF training with 0.1 Hz breathing improved the subjective sleep quality in healthy adults [t(24) = 4.9127, p ≤ 0.001, d = 0.99] as measured by the Pittsburgh Sleep Quality Index. In addition, mobile HRV-BF training with 0.1 Hz breathing was associated with an increase in the time and frequency domain parameters SDNN, Total Power and LF after four weeks of intervention. No effect was found on actigraphy metrics. Conclusions Mobile HRV-BF intervention with 0.1 Hz breathing increased the reported subjective sleep quality and may enhance the vagal activity in healthy young adults. HRV-BF training emerges as a promising tool for improving sleep quality and sleep-related symptom severity by means of normalizing an impaired autonomic imbalance during sleep.
Collapse
Affiliation(s)
- Benedict Herhaus
- Medical Psychology and Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Adrian Kalin
- Medical Psychology and Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Haralampos Gouveris
- Sleep Medicine Center and Department of Otolaryngology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katja Petrowski
- Medical Psychology and Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany
- *Correspondence: Katja Petrowski,
| |
Collapse
|
4
|
Masule MV, Rathod S, Agrawal Y, Patil CR, Nakhate KT, Ojha S, Goyal SN, Mahajan UB. Ghrelin mediated regulation of neurosynaptic transmitters in depressive disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100113. [PMID: 35782191 PMCID: PMC9240712 DOI: 10.1016/j.crphar.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Ghrelin is a peptide released by the endocrine cells of the stomach and the neurons in the arcuate nucleus of the hypothalamus. It modulates both peripheral and central functions. Although ghrelin has emerged as a potent stimulator of growth hormone release and as an orexigenic neuropeptide, the wealth of literature suggests its involvement in the pathophysiology of affective disorders including depression. Ghrelin exhibits a dual role through the advancement and reduction of depressive behavior with nervousness in the experimental animals. It modulates depression-related signals by forming neuronal networks with various neuropeptides and classical neurotransmitter systems. The present review emphasizes the integration and signaling of ghrelin with other neuromodulatory systems concerning depressive disorders. The role of ghrelin in the regulation of neurosynaptic transmission and depressive illnesses implies that the ghrelin system modulation can yield promising antidepressive therapies. Ghrelin is the orexigenic type of neuropeptide. It binds with the growth hormone secretagogue receptor (GHSR). GHSR is ubiquitously present in the various brain regions. Ghrelin is involved in the regulation of depression-related behavior. The review focuses on the neurotransmission and signaling of ghrelin in neuropsychiatric and depressive disorders.
Collapse
Affiliation(s)
- Milind V. Masule
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sumit Rathod
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Yogeeta Agrawal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Kartik T. Nakhate
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
- Corresponding author.
| | - Umesh B. Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
- Corresponding author.
| |
Collapse
|
5
|
Meng Z, Sun B, Chen W, Zhang X, Huang M, Xu J. Depression of Non-Neuronal Cholinergic System May Play a Role in Co-Occurrence of Subjective Daytime Sleepiness and Hypertension in Patients with Obstructive Sleep Apnea Syndrome. Nat Sci Sleep 2021; 13:2153-2163. [PMID: 34934375 PMCID: PMC8684399 DOI: 10.2147/nss.s339038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Simultaneous occurrence of hypertension and excessive daytime sleepiness (EDS) is very common in obstructive sleep apnea syndrome (OSAS), although no study has specifically addressed this issue. The present study explored the risk factors for co-occurrence of OSAS-related EDS and hypertension. PATIENTS AND METHODS A total of 161 OSAS patients were studied after undergoing an eight-hour in-laboratory polysomnography for one night. The OSAS severity assessment depends on the number of breathing disturbances per hour of sleep. EDS was defined using the Epworth Sleepiness Scale (ESS) scores of ≥13. Hypertension was defined according to direct cuff blood pressure (BP) measurements. Beat-to-beat R-R interval data were incorporated in polysomnography for heart rate variability analysis. The low-frequency/high-frequency band ratio was used to reflect sympathovagal balance. The study participants were divided into four groups based on the presence of EDS and/or hypertension: EDS with hypertension (n = 53), EDS without hypertension (n = 27), no EDS with hypertension (n = 38), and no EDS or hypertension (n = 43). Clinical, polysomnographic and heart rate data were compared and studied among the four groups. Plasma acetylcholine (ACh) levels were assessed to explore the effects of the non-neuronal cholinergic system and the co-occurrence of EDS and hypertension. RESULTS Patients with EDS and hypertension had more severe OSAS severity indices compared to control patients. Increased cardiac sympathovagal imbalance and nocturnal hypoxemia regulated the presence of EDS and hypertension. Further plasma biomarker analysis revealed that both ESS scores and BP levels were associated with significantly elevated plasma norepinephrine, interleukin-6 and superoxide dismutase levels and significantly decreased ACh levels. Logistic regression analyses showed that ACh was the only factor significantly associated with co-occurrence of EDS and hypertension after controlling for confounders using odds ratio of 0.932, with a 95% confidence interval of 0.868 to 1.000 (P = 0.049). CONCLUSION The results suggested that OSAS coupled with both EDS and hypertension is a more severe phenotype of the respiratory disorder. The presence of EDS and hypertension was accompanied by sympathovagal imbalance, and co-occurrence of these two conditions may be related to decreased plasma ACh levels.
Collapse
Affiliation(s)
- Zili Meng
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu, People’s Republic of China
| | - Bing Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu, People’s Republic of China
| | - Wei Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu, People’s Republic of China
| | - Xilong Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jing Xu
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Czarnecki P, Lin J, Aton SJ, Zochowski M. Dynamical Mechanism Underlying Scale-Free Network Reorganization in Low Acetylcholine States Corresponding to Slow Wave Sleep. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:759131. [PMID: 35785148 PMCID: PMC9249096 DOI: 10.3389/fnetp.2021.759131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022]
Abstract
Sleep is indispensable for most animals' cognitive functions, and is hypothesized to be a major factor in memory consolidation. Although we do not fully understand the mechanisms of network reorganisation driving memory consolidation, available data suggests that sleep-associated neurochemical changes may be important for such processes. In particular, global acetylcholine levels change across the sleep/wake cycle, with high cholinergic tone during wake and REM sleep and low cholinergic tone during slow wave sleep. Furthermore, experimental perturbation of cholinergic tone has been shown to impact memory storage. Through in silico modeling of neuronal networks, we show how spiking dynamics change in highly heterogenous networks under varying levels of cholinergic tone, with neuronal networks under high cholinergic modulation firing asynchronously and at high frequencies, while those under low cholinergic modulation exhibit synchronous patterns of activity. We further examined the network's dynamics and its reorganization mediated via changing levels of acetylcholine within the context of different scale-free topologies, comparing network activity within the hub cells, a small group of neurons having high degree connectivity, and with the rest of the network. We show a dramatic, state-dependent change in information flow throughout the network, with highly active hub cells integrating information in a high-acetylcholine state, and transferring it to rest of the network in a low-acetylcholine state. This result is experimentally corroborated by frequency-dependent frequency changes observed in vivo experiments. Together, these findings provide insight into how new neurons are recruited into memory traces during sleep, a mechanism which may underlie system memory consolidation.
Collapse
Affiliation(s)
- Paulina Czarnecki
- Department of Mathematics, University of Michigan, Ann Arbor, MI, United States
| | - Jack Lin
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Sara J. Aton
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Michal Zochowski
- Department of Physics and Biophysics Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Dai X, Zhou E, Yang W, Mao R, Zhang W, Rao Y. Molecular resolution of a behavioral paradox: sleep and arousal are regulated by distinct acetylcholine receptors in different neuronal types in Drosophila. Sleep 2021; 44:6119684. [PMID: 33493349 DOI: 10.1093/sleep/zsab017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/21/2020] [Indexed: 02/02/2023] Open
Abstract
Sleep and arousal are both important for animals. The neurotransmitter acetylcholine (ACh) has long been found to promote both sleep and arousal in mammals, an apparent paradox which has also been found to exist in flies, causing much confusion in understanding sleep and arousal. Here, we have systematically studied all 13 ACh receptors (AChRs) in Drosophila to understand mechanisms underlying ACh function in sleep and arousal. We found that exogenous stimuli-induced arousal was decreased in nAChRα3 mutants, whereas sleep was decreased in nAChRα2 and nAChRβ2 mutants. nAChRα3 functions in dopaminergic neurons to promote exogenous stimuli-induced arousal, whereas nAChRα2 and β2 function in octopaminergic neurons to promote sleep. Our studies have revealed that a single transmitter can promote endogenous sleep and exogenous stimuli-induced arousal through distinct receptors in different types of downstream neurons.
Collapse
Affiliation(s)
- Xihuimin Dai
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA
| | - Enxing Zhou
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China
| | - Wei Yang
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Renbo Mao
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Wenxia Zhang
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China
| | - Yi Rao
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
8
|
Blackman J, Swirski M, Clynes J, Harding S, Leng Y, Coulthard E. Pharmacological and non-pharmacological interventions to enhance sleep in mild cognitive impairment and mild Alzheimer's disease: A systematic review. J Sleep Res 2021; 30:e13229. [PMID: 33289311 PMCID: PMC8365694 DOI: 10.1111/jsr.13229] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Suboptimal sleep causes cognitive decline and probably accelerates Alzheimer's Disease (AD) progression. Several sleep interventions have been tested in established AD dementia cases. However early intervention is needed in the course of AD at Mild Cognitive Impairment (MCI) or mild dementia stages to help prevent decline and maintain good quality of life. This systematic review aims to summarize evidence on sleep interventions in MCI and mild AD dementia. Seven databases were systematically searched for interventional studies where ≥ 75% of participants met diagnostic criteria for MCI/mild AD dementia, with a control group and validated sleep outcome measures. Studies with a majority of participants diagnosed with Moderate to Severe AD were excluded. After removal of duplicates, 22,133 references were returned in two separate searches (August 2019 and September 2020). 325 full papers were reviewed with 18 retained. Included papers reported 16 separate studies, total sample (n = 1,056), mean age 73.5 years. 13 interventions were represented: Cognitive Behavioural Therapy - Insomnia (CBT-I), A Multi-Component Group Based Therapy, A Structured Limbs Exercise Programme, Aromatherapy, Phase Locked Loop Acoustic Stimulation, Transcranial Stimulation, Suvorexant, Melatonin, Donepezil, Galantamine, Rivastigmine, Tetrahydroaminoacridine and Continuous Positive Airway Pressure (CPAP). Psychotherapeutic approaches utilising adapted CBT-I and a Structured Limbs Exercise Programme each achieved statistically significant improvements in the Pittsburgh Sleep Quality Index with one study reporting co-existent improved actigraphy variables. Suvorexant significantly increased Total Sleep Time and Sleep Efficiency whilst reducing Wake After Sleep Onset time. Transcranial Stimulation enhanced cortical slow oscillations and spindle power during daytime naps. Melatonin significantly reduced sleep latency in two small studies and sleep to wakefulness transitions in a small sample. CPAP demonstrated efficacy in participants with Obstructive Sleep Apnoea. Evidence to support other interventions was limited. Whilst new evidence is emerging, there remains a paucity of evidence for sleep interventions in MCI and mild AD highlighting a pressing need for high quality experimental studies exploring alternative sleep interventions.
Collapse
Affiliation(s)
- Jonathan Blackman
- North Bristol NHS TrustBristolUK
- Bristol Medical SchoolUniversity of BristolBristolUK
| | | | | | | | - Yue Leng
- Department of PsychiatryUniversity of CaliforniaSan FranciscoCAUSA
| | | |
Collapse
|
9
|
Pavone KJ, Jablonski J, Cacchione PZ, Polomano RC, Compton P. Evaluating Pain, Opioids, and Delirium in Critically Ill Older Adults. Clin Nurs Res 2020; 30:455-463. [PMID: 33215518 DOI: 10.1177/1054773820973123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Untreated pain and pain management with opioids are independent precipitating factors for delirium. This retrospective study evaluated the relationships among pain severity, its management with opioids, and the onset of delirium in older adult patients admitted to the surgical intensive care unit (SICU). Consecutive patients aged 65 or greater admitted to the SICU over a 5-month period were examined (n = 172). When assessed using a multivariable general estimating equation model, opioids (chi-square [χ2], 12.34, p = .0004), but not pain (χ2, 3.31, p = .0688) were significant in predicting next-day delirium status. Controlling for pain, patients exposed to opioids were 2.5 times more likely to develop delirium than patients not exposed (95% Confidence Interval: 1.44-4.36). Our data shows that opioid administration predicted the onset of next-day delirium. In an effort to prevent delirium, future research should focus on opioid-sparing pain management approaches to mitigate pain and delirium.
Collapse
Affiliation(s)
| | | | - Pamela Z Cacchione
- University of Pennsylvania, Philadelphia, USA.,Penn Presbyterian Medical Center, Philadelphia, PA, USA
| | | | | |
Collapse
|
10
|
Puri S, El-Chami M, Shaheen D, Ivers B, Panza GS, Badr MS, Lin HS, Mateika JH. Variations in loop gain and arousal threshold during NREM sleep are affected by time of day over a 24-hour period in participants with obstructive sleep apnea. J Appl Physiol (1985) 2020; 129:800-809. [PMID: 32790595 DOI: 10.1152/japplphysiol.00376.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated whether time of day affects loop gain (LG) and the arousal threshold (AT) during non-rapid eye movement (NREM) sleep. Eleven men with obstructive sleep apnea (apnea-hypopnea index > 5 events/h) completed a constant-routine protocol that comprised 3-h sleep sessions in the evening [10 PM (1) to 1 AM], morning (6 AM to 9 AM), afternoon (2 PM to 5 PM), and subsequent evening [10 PM (2) to 1 AM]. During each sleep session LG and the AT were measured during NREM sleep with a model-based approach. Our results showed the presence of a rhythmicity in both LG (P < 0.0001) and the AT (P < 0.001) over a 24-h period. In addition, LG and the AT were greater in the morning compared with both evening sessions [6 AM vs. 10 PM (1) vs. 10 PM (2): LG (1 cycle/min): 0.71 ± 0.23 vs. 0.60 ± 0.22 (P = 0.01) vs. 0.56 ± 0.10 (P < 0.001), AT (fraction of eupneic breathing): 1.45 ± 0.47 vs. 1.28 ± 0.36 (P = 0.02) vs. 1.20 ± 0.18 (P = 0.001)]. No difference in LG and the AT existed between the evening sessions (LG: P = 0.27; AT: P = 0.24). LG was correlated to measures of the hypocapnic ventilatory response (i.e., a measure of chemoreflex sensitivity) (r = 0.72 and P = 0.045) and the critical closing pressure (i.e., a measure of airway collapsibility) (r = 0.77 and P = 0.02) that we previously published. We conclude that time of day, independent of hallmarks of sleep apnea, affects LG and the AT during NREM sleep. These modifications may contribute to increases in breathing instability in the morning compared with other periods throughout the day/night cycle in individuals with obstructive sleep apnea. In addition, efficaciousness of treatments for obstructive sleep apnea that target LG and the AT may be modified by a rhythmicity in these variables.NEW & NOTEWORTHY Loop gain and the arousal threshold during non-rapid eye movement (NREM) sleep are greater in the morning compared with the afternoon and evening. Loop gain measures are correlated to chemoreflex sensitivity and the critical closing pressure measured during NREM sleep in the evening, morning, and afternoon. Breathing (in)stability and efficaciousness of treatments for obstructive sleep apnea may be modulated by a circadian rhythmicity in loop gain and the arousal threshold.
Collapse
Affiliation(s)
- Shipra Puri
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohamad El-Chami
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - David Shaheen
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Blake Ivers
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Gino S Panza
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - M Safwan Badr
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan.,Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| | - Ho-Sheng Lin
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, Michigan
| | - Jason H Mateika
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
11
|
Javad-Moosavi BZ, Nasehi M, Vaseghi S, Jamaldini SH, Zarrindast MR. Activation and Inactivation of Nicotinic Receptnors in the Dorsal Hippocampal Region Restored Negative Effects of Total (TSD) and REM Sleep Deprivation (RSD) on Memory Acquisition, Locomotor Activity and Pain Perception. Neuroscience 2020; 433:200-211. [PMID: 32200080 DOI: 10.1016/j.neuroscience.2020.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Sleep deprivation (SD) is a common issue in today's society. Sleep is essential for proper cognitive functions, including learning and memory. Furthermore, sleep disorders can alter pain information processing. Meanwhile, hippocampal nicotinic receptors have a role in modulating pain and memory. The goal of this study is to investigate the effect of dorsal hippocampal (CA1) nicotinic receptors on behavioral changes induced by Total (TSD) and REM Sleep Deprivation (RSD). A modified water box and multi-platform apparatus were used to induce TSD and RSD, respectively. To investigate the interaction between nicotinic receptors and hippocampus-dependent memory, nicotinic receptor agonist (nicotine) or antagonist (mecamylamine) was injected into the CA1 region. The results showed, nicotine at the doses of 0.001 and 0.1 µg/rat and mecamylamine at the doses of 0.01 and 0.1 µg/rat decreased memory acquisition, while both at the doses of 0.01 and 0.1 µg/rat enhanced locomotor activity. Additionally, all doses used for both drugs did not alter pain perception. Also, 24 h TSD or RSD attenuated memory acquisition with no effect on locomotor activity and only TSD induced an analgesic effect. Intra-CA1 administration of subthreshold dose of nicotine (0.0001 µg/rat) and mecamylamine (0.001 µg/rat) did not alter memory acquisition, pain perception and locomotor activity in sham of TSD/RSD rats. Both drugs reversed all behavioral changes induced by TSD. Furthermore, both drugs reversed the effect of RSD on memory acquisition, while only mecamylamine reversed the effect of RSD on locomotor activity. In conclusion, CA1 nicotinic receptors play a significant role in TSD/RSD-induced behavioral changes.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Hamid Jamaldini
- Department of Genetic, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
12
|
Eugene AR. Association of sleep among 30 antidepressants: a population-wide adverse drug reaction study, 2004-2019. PeerJ 2020; 8:e8748. [PMID: 32201646 PMCID: PMC7071824 DOI: 10.7717/peerj.8748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/14/2020] [Indexed: 01/08/2023] Open
Abstract
Background Sleep is one of the most essential processes required to maintain a healthy human life, and patients experiencing psychiatric illness often experience an inability to sleep. The aim of this study is to test the hypothesis that antidepressant compounds with strong binding affinities for the serotonin 5-HT2C receptor, histamine H1 receptors, or norepinephrine transporter (NET) will be associated with the highest odds of somnolence. Methods Post-marketing cases of patient adverse drug reactions were obtained from the United States Food and Drug Administration Adverse Events Reporting System (FAERS) during the reporting window of January 2004 to September 2019. Disproportionality analyses of antidepressants reporting somnolence were calculated using the case/non-case method. The reporting odds-ratios (ROR) and corresponding 95% confidence interval (95% CI) were computed and all computations and graphing conducted in R. Results There were a total of 69,196 reported cases of somnolence out of a total of 7,366,864 cases reported from January 2004 to September 2019. Among the 30 antidepressants assessed, amoxapine (n = 16) reporting odds-ratio (ROR) = 7.1 (95% confidence interval [CI] [4.3–11.7]), atomoxetine (n = 1,079) ROR = 6.6 (95% CI [6.2–7.1]), a compound generally approved for attention deficit hyperactivity disorder (ADHD), and maprotiline (n = 18) ROR = 6.3 (95% CI, 3.9–10.1) were the top three compounds ranked with the highest reporting odds of somnolence. In contrast, vortioxetine (n = 52) ROR = 1.3 (95% CI [1.0–1.8]), milnacipran (n = 58) ROR = 2.1 (95% CI [1.7–2.8]), and bupropion (n = 1,048) ROR = 2.2 (95% CI [2.1–2.4]) are least significantly associated with somnolence. Moreover, levomilnacipran (n = 1) ROR = 0.4 (95% CI [0.1–2.9]) was not associated with somnolence. Conclusion Among the thirty tested antidepressants, consistent with the original hypothesis, amoxepine has strongest 5-HT2C receptor binding affinity and has the highest reporting odds of somnolence. Atomoxetine, ranked second in reporting odds of somnolence overall, binds to the NET with with the strongest binding affinity among the thirty compounds. Mirtazapine, a tetracyclic antidepressant, was ranked 11th in reporting odds of somnolence and had the strongest H1 receptor binding affinity. This study provides an informative ranking of somnolence among thirty antidepressant compounds with an already wide array of clinical indications as well as provides insight into potential drug repurposing in psychopharmacology.
Collapse
Affiliation(s)
- Andy R Eugene
- Independent Researcher, Kansas, United States of America.,Independent Neurophysiology Unit, Department of Psychiatry, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
13
|
Murillo-Rodríguez E, Arankowsky-Sandoval G, Pertwee RG, Parker L, Mechoulam R. Sleep and neurochemical modulation by cannabidiolic acid methyl ester in rats. Brain Res Bull 2020; 155:166-173. [DOI: 10.1016/j.brainresbull.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
|
14
|
Abstract
Over the past decade, basic sleep research investigating the circuitry controlling sleep and wakefulness has been boosted by pharmacosynthetic approaches, including chemogenetic techniques using designed receptors exclusively activated by designer drugs (DREADD). DREADD offers a series of tools that selectively control neuronal activity as a way to probe causal relationship between neuronal sub-populations and the regulation of the sleep-wake cycle. Following the path opened by optogenetics, DREADD tools applied to discrete neuronal sub-populations in numerous brain areas quickly made their contribution to the discovery and the expansion of our understanding of critical brain structures involved in a wide variety of behaviors and in the control of vigilance state architecture.
Collapse
|
15
|
Mu P, Huang YH. Cholinergic system in sleep regulation of emotion and motivation. Pharmacol Res 2019; 143:113-118. [PMID: 30894329 DOI: 10.1016/j.phrs.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 01/22/2023]
Abstract
Sleep profoundly regulates our emotional and motivational state of mind. Human brain imaging and animal model studies are providing initial insights on the underlying neural mechanisms. Here, we focus on the brain cholinergic system, including cholinergic neurons in the basal forebrain, ventral striatum, habenula, and brain stem. Although much is learned about cholinergic regulations of emotion and motivation, less is known on their interactions with sleep. Specifically, we present an anatomical framework that highlights cholinergic signaling in the integrated reward-arousal/sleep circuitry, and identify the knowledge gaps on the potential roles of cholinergic system in sleep-mediated regulation of emotion and motivation. Sleep impacts every aspect of brain functions. It not only restores cognitive control, but also retunes emotional and motivational regulation [1]. Sleep disturbance is a comorbidity and sometimes a predicting factor for various psychiatric diseases including major depressive disorder, anxiety, post-traumatic stress disorder, and drug addiction [2-9]. Although it is well recognized that sleep prominently shapes emotional and motivational regulation, the underlying neural mechanisms remain elusive. The brain cholinergic system is essential for a diverse variety of functions including cognition, learning and memory, sensory and motor processing, sleep and arousal, reward processing, and emotion regulation [10-14]. Although cholinergic functions in cognition, learning and memory, motor control, and sleep and arousal have been well established, its interaction with sleep in regulating emotion and motivation has not been extensively studied. Here we review current evidence on sleep-mediated regulation of emotion and motivation, and reveal knowledge gaps on potential contributions from the cholinergic system.
Collapse
Affiliation(s)
- Ping Mu
- College of Life Sciences, Ludong University, 186 Hongqi Middle Road, Yantai, Shandong, 264025, China.
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, 15219, PA, United States.
| |
Collapse
|
16
|
Mateika JH, Komnenov D, Pop A, Kuhn DM. Genetic depletion of 5-HT increases central apnea frequency and duration and dampens arousal but does not impact the circadian modulation of these variables. J Appl Physiol (1985) 2019; 126:1-10. [DOI: 10.1152/japplphysiol.00724.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We examined the impact of serotonin (5-HT) on the frequency and duration of central apneic events and the frequency of accompanying arousals during nonrapid and rapid eye movement (NREM and REM, respectively) sleep across the light/dark cycle. Electroencephalography, electromyography, core body temperature, and activity were recorded for 24 h following implantation of telemeters in wild-type (Tph2+/+) and tryptophan hydroxylase 2 knockout (Tph2−/−) male mice. The frequency and duration of central apneic events were increased, the number of apneic events coupled to an arousal was decreased, and the ventilatory sensitivity to hypoxia and hypercapnia was decreased in the Tph2−/− compared with the Tph2+/+ mice during NREM sleep. Apnea frequency and duration were similar in the Tph2−/− and Tph2+/+ mice during REM sleep. The duration of apneic events during REM compared with NREM sleep was similar in the Tph2−/− mice. In contrast, the duration was greater during REM sleep in the Tph2+/+ mice. Our results also revealed that apnea frequency was greater during the light compared with the dark cycle. Circadian modulation of this variable was evident in both the Tph2−/− and Tph2+/+ mice during NREM and REM sleep. We conclude that depletion of 5-HT increases the frequency and duration of central apneic events, dampens arousal, and blunts the ventilatory response to hypoxia and hypercapnia during NREM sleep but is not essential for the circadian modulation of these variables. NEW & NOTEWORTHY The presence of serotonin (5-HT) in the central nervous system diminishes the frequency of central apneic events. This neuromodulator also moderates the duration of central apneic events and promotes arousal from central events if they occur during nonrapid eye movement (NREM) sleep. However, 5-HT is not responsible for the circadian modulation of apnea frequency, which we found was greater during NREM sleep in the light compared with the dark cycle.
Collapse
Affiliation(s)
- Jason H. Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - Dragana Komnenov
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Alexandru Pop
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M. Kuhn
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
17
|
|
18
|
Wilson-Baig N. The value of Life Sciences in an Integrated Curriculum: A Reflective Perspective of studying two Life Sciences Degrees a decade apart and the challenges faced in professional life. MEDEDPUBLISH 2017; 6:117. [PMID: 38406452 PMCID: PMC10885272 DOI: 10.15694/mep.2017.000117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
This article was migrated. The article was marked as recommended. In a recent MedEdPublish article by Keenan and Jennings (2017), I was interested in why some Life Sciences are under-represented in the wider medical literature. The article states anatomy to be the dominant discipline within medical schools and describes a close link between anatomy and educational research with the presence of an "established medical education research community and social media community linked to anatomy". Unfortunately, this does not appear to be the case with other scientific disciplines. In my career, I have been fortunate to have studied both Pharmacy and Medicine as an undergraduate. I also possess an MSc in Clinical Pharmacy and am undertaking an MSc in Clinical Research. I have seen at first-hand how integral the Life Sciences are in the practice of Pharmacy and Medicine. It is therefore necessary that, like anatomy, other Life Sciences should enjoy a similar commitment to "maintaining a scholarly approach to teaching and learning ( Keenan and Jennings, 2017). Currently, I am an Academic Clinical Registrar in Anaesthesia working in the North-West. I am part funded by the National Institute for Health Research (NIHR). Considering my background, I would like to share a personal reflection of my experience of undergraduate training and professional life. I will compare the undergraduate teaching styles I experienced whilst studying for my Pharmacy and Medicine degrees. I will also describe the challenges I faced and the moments of enlightenment I felt when I chose to embark on a career in academia with clinical practice.
Collapse
|
19
|
McEntire DM, Kirkpatrick DR, Kerfeld MJ, Hambsch ZJ, Reisbig MD, Agrawal DK, Youngblood CF. Effect of sedative-hypnotics, anesthetics and analgesics on sleep architecture in obstructive sleep apnea. Expert Rev Clin Pharmacol 2015; 7:787-806. [PMID: 25318836 DOI: 10.1586/17512433.2014.966815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The perioperative care of obstructive sleep apnea (OSA) patients is currently receiving much attention due to an increased risk for complications. It is established that postoperative changes in sleep architecture occur and this may have pathophysiological implications for OSA patients. Upper airway muscle activity decreases during rapid eye movement sleep (REMS). Severe OSA patients exhibit exaggerated chemoreceptor-driven ventilation during non-rapid eye movement sleep (NREMS), which leads to central and obstructive apnea. This article critically reviewed the literature relevant to preoperative screening for OSA, prevalence of OSA in surgical populations and changes in postoperative sleep architecture relevant to OSA patients. In particular, we addressed three questions in regard to the effects of sedative-hypnotics, anesthetics and analgesics on sleep architecture, the underlying mechanisms and the relevance to OSA. Indeed, these classes of drugs alter sleep architecture, which likely significantly contributes to abnormal postoperative sleep architecture, exacerbation of OSA and postoperative complications.
Collapse
Affiliation(s)
- Dan M McEntire
- Department of Anesthesiology and the Center for Clinical and Translational Science, Creighton University School of Medicine, 601 N. 30th Street, Suite 3222, Omaha, NE 68131, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Chen Z, Li Y, Liu R, Gao D, Chen Q, Hu Z, Guo J. Effects of interface pressure distribution on human sleep quality. PLoS One 2014; 9:e99969. [PMID: 24924427 PMCID: PMC4055748 DOI: 10.1371/journal.pone.0099969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/20/2014] [Indexed: 02/02/2023] Open
Abstract
High sleep quality promotes efficient performance in the following day. Sleep quality is influenced by environmental factors, such as temperature, light, sound and smell. Here, we investigated whether differences in the interface pressure distribution on healthy individuals during sleep influenced sleep quality. We defined four types of pressure models by differences in the area distribution and the subjective feelings that occurred when participants slept on the mattresses. One type of model was showed "over-concentrated" distribution of pressure; one was displayed "over-evenly" distributed interface pressure while the other two models were displayed intermediate distribution of pressure. A polysomnography analysis demonstrated an increase in duration and proportion of non-rapid-eye-movement sleep stages 3 and 4, as well as decreased number of micro-arousals, in subjects sleeping on models with pressure intermediately distributed compared to models with over-concentrated or over-even distribution of pressure. Similarly, higher scores of self-reported sleep quality were obtained in subjects sleeping on the two models with intermediate pressure distribution. Thus, pressure distribution, at least to some degree, influences sleep quality and self-reported feelings of sleep-related events, though the underlying mechanisms remain unknown. The regulation of pressure models imposed by external sleep environment may be a new direction for improving sleep quality. Only an appropriate interface pressure distribution is beneficial for improving sleep quality, over-concentrated or -even distribution of pressure do not help for good sleep.
Collapse
Affiliation(s)
- Zongyong Chen
- Sleep Research Center, DaZiRan Science and Technology Ltd., Guiyang, Guizhou, China
| | - Yuqian Li
- Sleep Research Center, DaZiRan Science and Technology Ltd., Guiyang, Guizhou, China
| | - Rong Liu
- Sleep Research Center, DaZiRan Science and Technology Ltd., Guiyang, Guizhou, China
| | - Dong Gao
- Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Quanhui Chen
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Zhian Hu
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jiajun Guo
- Sleep Research Center, DaZiRan Science and Technology Ltd., Guiyang, Guizhou, China
- Department of Physiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
22
|
Otuyama LJ, Rizzi CF, Piovezan RD, Werli KS, Brasil EL, Sukys-Claudino L, Tufik S, Poyares D. The cholinergic system may play a role in the pathophysiology of residual excessive sleepiness in patients with obstructive sleep apnea. Med Hypotheses 2013; 81:509-11. [PMID: 23891038 DOI: 10.1016/j.mehy.2013.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/30/2013] [Indexed: 11/15/2022]
Abstract
Obstructive sleep apnea (OSA) is a prevalent condition characterized by momentary cessations in breathing during sleep due to intermittent obstruction of the upper airway. OSA has been frequently associated with a number of medical comorbidities. CPAP (continuous positive airway pressure) is the gold standard treatment and is known to improve OSA symptoms, including excessive sleepiness. However, 12-14% of CPAP-treated patients continue to complain of sleepiness despite normalization of ventilation during sleep, and 6% after exclusion of other causes of EDS. This is of great concern because EDS is strongly associated with systemic health disorders, lower work performance, and a high risk of accidents. We hypothesized that decreased central cholinergic activity plays a role in the pathophysiology of residual excessive sleepiness in patients with OSA treated with CPAP. Acetylcholine (Ach) plays a large role in wakefulness physiology, and its levels are reduced in sleepiness. Herein, we discuss the potential role of the cholinergic system in this new clinical condition.
Collapse
Affiliation(s)
- Leonardo J Otuyama
- Sleep Medicine and Biology Discipline, Psychobiology Department, Universidade Federal de Sao Paulo, Rua Napoleao de Barros, 925. Vila Clementino, Sao Paulo, SP 04024-002, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Evidences of possible side effects of neuroleptic drugs: A systematic review. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2012. [DOI: 10.1016/s2305-0500(13)60105-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|