1
|
Deli A, Zamora M, Fleming JE, Divanbeighi Zand A, Benjaber M, Green AL, Denison T. Bioelectronic Zeitgebers: targeted neuromodulation to re-establish circadian rhythms. CONFERENCE PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS 2023; 2023:2301-2308. [PMID: 38343562 PMCID: PMC7615625 DOI: 10.1109/smc53992.2023.10394632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Existing neurostimulation systems implanted for the treatment of neurodegenerative disorders generally deliver invariable therapy parameters, regardless of phase of the sleep/wake cycle. However, there is considerable evidence that brain activity in these conditions varies according to this cycle, with discrete patterns of dysfunction linked to loss of circadian rhythmicity, worse clinical outcomes and impaired patient quality of life. We present a targeted concept of circadian neuromodulation using a novel device platform. This system utilises stimulation of circuits important in sleep and wake regulation, delivering bioelectronic cues (Zeitgebers) aimed at entraining rhythms to more physiological patterns in a personalised and fully configurable manner. Preliminary evidence from its first use in a clinical trial setting, with brainstem arousal circuits as a surgical target, further supports its promising impact on sleep/wake pathology. Data included in this paper highlight its versatility and effectiveness on two different patient phenotypes. In addition to exploring acute and long-term electrophysiological and behavioural effects, we also discuss current caveats and future feature improvements of our proposed system, as well as its potential applicability in modifying disease progression in future therapies.
Collapse
Affiliation(s)
- Alceste Deli
- Functional Neurosurgery Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Mayela Zamora
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford OX3 7DQ, UK
| | - John E. Fleming
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford OX3 7DQ, UK
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Amir Divanbeighi Zand
- Functional Neurosurgery Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Moaad Benjaber
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford OX3 7DQ, UK
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Alexander L. Green
- Functional Neurosurgery Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Timothy Denison
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford OX3 7DQ, UK
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| |
Collapse
|
2
|
Dubessy AL, Arnulf I. Sleepiness in neurological disorders. Rev Neurol (Paris) 2023; 179:755-766. [PMID: 37598089 DOI: 10.1016/j.neurol.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
Sleepiness is a frequent and underrecognized symptom in neurological disorders, that impacts functional outcomes and quality of life. Multiple and potentially additive factors might contribute to sleepiness in neurological disorders, including sleep quality alterations, circadian rhythm disorders, drugs, and sleep disorders including sleep apnea or central disorders of hypersomnolence. Physician awareness of the possible symptoms of hypersomnolence, and associated causes is of crucial importance to allow proper identification and treatment of underlying causes. This review first provides a brief overview on clinical aspects of excessive daytime sleepiness, and diagnosis tools, then examines its frequency and mechanisms in various neurological disorders, including neurodegenerative disorders, multiple sclerosis, autoimmune encephalitis, epilepsy, and stroke.
Collapse
Affiliation(s)
- A-L Dubessy
- Saint Antoine Hospital, Assistance publique des Hôpitaux de Paris (AP-HP), Paris, France.
| | - I Arnulf
- Sleep Disorder Unit, Pitié-Salpêtrière Hospital and Sorbonne University, Paris, France; National Reference Network for Orphan Diseases: Narcolepsy and Rare Hypersomnias, Paris, France
| |
Collapse
|
3
|
Tong Z, Chu G, Wan C, Wang Q, Yang J, Meng Z, Du L, Yang J, Ma H. Multiple Metabolites Derived from Mushrooms and Their Beneficial Effect on Alzheimer's Diseases. Nutrients 2023; 15:2758. [PMID: 37375662 DOI: 10.3390/nu15122758] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Mushrooms with edible and medicinal potential have received widespread attention because of their diverse biological functions, nutritional value, and delicious taste, which are closely related to their rich active components. To date, many bioactive substances have been identified and purified from mushrooms, including proteins, carbohydrates, phenols, and vitamins. More importantly, molecules derived from mushrooms show great potential to alleviate the pathological manifestations of Alzheimer's disease (AD), which seriously affects the health of elderly people. Compared with current therapeutic strategies aimed at symptomatic improvement, it is particularly important to identify natural products from resource-rich mushrooms that can modify the progression of AD. This review summarizes recent investigations of multiple constituents (carbohydrates, peptides, phenols, etc.) isolated from mushrooms to combat AD. In addition, the underlying molecular mechanisms of mushroom metabolites against AD are discussed. The various mechanisms involved in the antiAD activities of mushroom metabolites include antioxidant and anti-neuroinflammatory effects, apoptosis inhibition, and stimulation of neurite outgrowth, etc. This information will facilitate the application of mushroom-derived products in the treatment of AD. However, isolation of new metabolites from multiple types of mushrooms and further in vivo exploration of the molecular mechanisms underlying their antiAD effect are still required.
Collapse
Affiliation(s)
- Zijian Tong
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Chenmeng Wan
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Qiaoyu Wang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jialing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Zhaoli Meng
- Laboratory of Tumor Immunolgy, The First Hospital of Jilin University, Changchun 130061, China
| | - Linna Du
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hongxia Ma
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
The modulatory effect of plant polysaccharides on gut flora and the implication for neurodegenerative diseases from the perspective of the microbiota-gut-brain axis. Int J Biol Macromol 2020; 164:1484-1492. [DOI: 10.1016/j.ijbiomac.2020.07.208] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
|
5
|
Malhotra RK. Evaluating the Sleepy and Sleepless Patient. ACTA ACUST UNITED AC 2020; 26:871-889. [PMID: 32756226 DOI: 10.1212/con.0000000000000880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW This article explains the clinical approach to patients presenting with sleepiness or sleeplessness in a neurologic practice setting. Addressing the patient's sleep symptoms may help improve symptoms of their other underlying primarily neurologic disorder. RECENT FINDINGS New diagnostic modalities at home such as home sleep apnea testing have improved access and diagnosis of sleep apnea. Consumer health tracking devices have also helped patients focus on their sleep duration and quality, prompting them to bring their concerns to their neurologist. SUMMARY Like many neurologic disorders, a detailed history and physical examination are critical in the evaluation of patients with sleepiness or sleeplessness. Patients who have neurologic disorders are more likely to have poor-quality sleep. Questions about the patient's sleep schedule or screening patients for common sleep disorders such as sleep apnea and restless legs syndrome (RLS) are useful to add to a typical neurologic evaluation to better recognize sleep disorders in this population. Polysomnography, home sleep apnea testing, multiple sleep latency tests, and actigraphy can be used with the available history and examination to determine the proper diagnosis and management plan for these patients.
Collapse
|
6
|
Suzuki K, Suzuki S, Ishii Y, Okamura M, Matsubara T, Fujita H, Nozawa N, Kobayashi S, Hirata K. Plasma prostaglandin D2 synthase levels in sleep and neurological diseases. J Neurol Sci 2020; 411:116692. [PMID: 31981928 DOI: 10.1016/j.jns.2020.116692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Prostaglandin D2 (PGD2) induces sleep and may play a role in sleep and neurological disorders. We investigated PGD synthase (PGDS) levels in various sleep and neurological disorders. METHODS Sixty-three patients with neurological or sleep disorders (Parkinson's disease with excessive daytime sleepiness (PDS), n = 19; PD without sleepiness (PDWS), n = 14; Alzheimer's disease (AD), n = 10; narcolepsy (NA), n = 10; sleep apnea syndrome (SAS), n = 10) and 21 healthy controls were included in this study. Plasma lipocalin-type PGDS (L-PGDS) and glutathione-dependent hematopoietic PGDS (H-PGDS) levels were assessed using an enzyme-linked immunosorbent assay. RESULTS H-PGDS levels were not significantly different among the groups. Compared with healthy controls, the PDWS, PDS and AD groups had higher levels of L-PGDS. Neither H-PGDS nor L-PGDS levels correlated with scores on the Epworth Sleepiness Scale or Pittsburgh Sleep Quality Index in any group. CONCLUSION We found higher levels of L-PGDS in patients with neurodegenerative diseases such as PD and AD. Whether increased L-PGDS levels reflect underlying sleepiness or the pathophysiology of neurodegenerative diseases needs further study.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University, Japan.
| | - Shiho Suzuki
- Department of Neurology, Dokkyo Medical University, Japan
| | - Yuko Ishii
- Department of Neurology, Dokkyo Medical University, Japan
| | - Madoka Okamura
- Department of Neurology, Dokkyo Medical University, Japan
| | | | - Hiroaki Fujita
- Department of Neurology, Dokkyo Medical University, Japan
| | | | - Saro Kobayashi
- Department of Neurology, Dokkyo Medical University, Japan
| | - Koichi Hirata
- Department of Neurology, Dokkyo Medical University, Japan
| |
Collapse
|
7
|
Xiang YQ, Xu Q, Sun QY, Wang ZQ, Tian Y, Fang LJ, Yang Y, Tan JQ, Yan XX, Tang BS, Guo JF. Clinical Features and Correlates of Excessive Daytime Sleepiness in Parkinson's Disease. Front Neurol 2019; 10:121. [PMID: 30837940 PMCID: PMC6389626 DOI: 10.3389/fneur.2019.00121] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/29/2019] [Indexed: 12/28/2022] Open
Abstract
Objective: To explore the clinical features and correlates of excessive daytime sleepiness (EDS) in a Chinese population of Parkinson's disease (PD) patients. Methods: Patients with clinically established or clinically probable PD were recruited. Clinical and demographic data were collected, and participants were evaluated using standardized assessment protocols. Patients were divided into PD with EDS and PD without EDS groups based on the Epworth sleepiness scale (ESS) scores, with a cutoff score of 10. Clinical manifestations were compared between patients with and without EDS, and correlates of EDS were also studied. In addition, the relationship between EDS and poor nighttime sleep quality was analyzed. Results: A total of 1,221 PD patients were recruited in our study. The mean ESS (min, max) score was 7.6 ± 6.1 (0, 24), and 34.1% of the patients had ESS scores ≥10. No difference was seen in lifestyle (except for alcohol consumption), environmental factors, BMI, levodopa equivalent dose (LED), initial presentation of motor symptoms, motor subtype, and wearing off between patients with and without EDS. The PD with EDS group had a higher proportion of male patients and a higher average patient age. Moreover, the PD with EDS group showed older age at PD onset, lower educational level, and longer disease duration. Patients with EDS had higher scores on the Hoehn-Yahr scale and the Unified Parkinson's Disease Rating Scale (UPDRS) parts I, II, and III score, more severe non-motor symptoms, and poorer quality of sleep and life. Logistic regression analyses demonstrated that EDS was associated with male sex, age, cognitive impairment, PD-related sleep problems, rapid eye movement sleep behavior disorder (RBD), and worse quality of life (QoL). Conclusion: EDS is a general clinical manifestation in PD, and there were significant differences in clinical features between patients with and without EDS. Moreover, our study proved that many factors were associated with EDS, including male sex, age, cognitive impairment, PD-related sleep problems, RBD, and worse QoL. Understanding the clinical characteristics of EDS in PD patients may help identify EDS early, improve QoL, and reduce the occurrence of accidents.
Collapse
Affiliation(s)
- Ya-Qin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Ying Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Liang-Juan Fang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie-Qiong Tan
- Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Xin-Xiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
8
|
Higami Y, Yamakawa M, Shigenobu K, Kamide K, Makimoto K. High frequency of getting out of bed in patients with Alzheimer's disease monitored by non-wearable actigraphy. Geriatr Gerontol Int 2018; 19:130-134. [DOI: 10.1111/ggi.13565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Yoko Higami
- Division of Health Sciences; Osaka University Graduate School of Medicine; Osaka Japan
- Faculty of Nursing; Osaka Medical College; Osaka Japan
| | - Miyae Yamakawa
- Division of Health Sciences; Osaka University Graduate School of Medicine; Osaka Japan
| | | | - Kei Kamide
- Division of Health Sciences; Osaka University Graduate School of Medicine; Osaka Japan
| | - Kiyoko Makimoto
- Division of Health Sciences; Osaka University Graduate School of Medicine; Osaka Japan
- School of Nursing and Rehabilitation; Konan Women's University; Kobe Japan
| |
Collapse
|
9
|
Shen Y, Huang JY, Li J, Liu CF. Excessive Daytime Sleepiness in Parkinson's Disease: Clinical Implications and Management. Chin Med J (Engl) 2018; 131:974-981. [PMID: 29664059 PMCID: PMC5912065 DOI: 10.4103/0366-6999.229889] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective Excessive daytime sleepiness (EDS) is one of the most common sleep abnormalities in patients with Parkinson's disease (PD), yet its multifactorial etiology complicates its treatment. This review summarized recent studies on the epidemiology, etiology, clinical implications, associated features, and evaluation of EDS in PD. The efficacy of pharmacologic and non-pharmacologic treatments for EDS in PD was also reviewed. Data Sources English language articles indexed in PubMed and Cochrane databases and Chinese-language papers indexed in Wanfang and National Knowledge Infrastructure databases that were published between January 1987 and November 2017 were located using the following search terms: "sleepiness", "sleep and Parkinson's disease", and "Parkinson's disease and treatment". Study Selection Original research articles and critical reviews related to EDS in PD were selected. Results EDS is a major health hazard and is associated with many motor and nonmotor symptoms of PD. Its causes are multifactorial. There are few specific guidelines for the treatment of EDS in PD. It is first necessary to identify and treat any possible factors causing EDS. Recent studies showed that some nonpharmacologic (i.e., cognitive behavioral therapy, light therapy, and repetitive transcranial magnetic stimulation) and pharmacologic (i.e., modafinil, methylphenidate, caffeine, istradefylline, sodium oxybate, and atomoxetine) treatments may be effective in treating EDS in PD. Conclusions EDS is common in the PD population and can have an immensely negative impact on quality of life. Its causes are multifactorial, which complicates its treatment. Further investigations are required to determine the safety and efficacy of potential therapies and to develop novel treatment approaches for EDS in PD.
Collapse
Affiliation(s)
- Yun Shen
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jun-Ying Huang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jie Li
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|