1
|
Hybrid Manufacturing of Oral Solid Dosage Forms via Overprinting of Injection-Molded Tablet Substrates. Pharmaceutics 2023; 15:pharmaceutics15020507. [PMID: 36839829 PMCID: PMC9965482 DOI: 10.3390/pharmaceutics15020507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Since 3D printing allows for patient-specific dosage forms, it has become a major focus in pharmaceutical research. However, it is difficult to scale up drug product manufacturing. Injection molding has been used in conjunction with hot-melt extrusion to mass produce drug products, but making tailored solid dosage forms with this technology is neither cost-effective nor simple. This study explored the use of a combination of fused filament fabrication and injection molding to create patient-specific solid dosage forms. A tablet fixation and location template was used to overprint directly on injection-molded tablet bases, and theophylline was combined with polycaprolactone and Kollidon® VA64 via hot-melt extrusion to produce the filament. Dynamic mechanical analysis was used to evaluate the brittleness of the filament, and differential scanning calorimetry was used to analyze the thermal results. The results showed that theophylline had a flow promoting effect on the polymer blend and that overprinted tablets were manufactured faster than 3D-printed tablets. Drug release studies also showed that overprinted tablets released faster than injection-molded tablets. This method demonstrates the potential of hybrid manufacturing for the pharmaceutical industry as a means of bridging the gap between personalized dosage forms and mass production.
Collapse
|
2
|
Yang J, Ching YC, Kadokami K. Occurrence and exposure risk assessment of organic micropollutants in indoor dust from Malaysia. CHEMOSPHERE 2022; 287:132340. [PMID: 34826953 DOI: 10.1016/j.chemosphere.2021.132340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Indoor dust is an important source of human exposure to hazardous organic micropollutants (OMPs) because humans spend about 90 % of their time in the indoor environments. This study initially analyzed the concentrations and compositions of OMPs in the dust of different indoor environments from Kuala Lumpur, Malaysia. A total of 57 OMPs were detected and assigned to 7 chemical classes in this study. The total concentration of OMPs ranged from 5980 to 183,000 ng/g, with the median concentration of 46,400 ng/g. Personal care products, organophosphate esters, and pesticides were the dominant groups, with their median concentrations at 12,000, 10,000, and 5940 ng/g, respectively. The concentrations and compositions of influential OMPs varied in different microenvironments, suggesting different sources and usage patterns in the house. Then, the noncarcinogenic and carcinogenic risks of exposure to these substances for diverse age groups were assessed based on the median concentration. Cumulative noncarcinogenic risks of these OMPs via ingestion pathway were estimated to be negligible (1.41 × 10-4 - 1.87 × 10-3). The carcinogenic risks of these OMPs were higher than 10-6 (1.63 × 10-6 - 6.17 × 10-6) and should be noted. Theobromine accounted for more than 89 % of the cumulative cancer risk, implying that the carcinogenic risk of theobromine needs further monitoring in the future. Toddler was the most affected group for cancer risk among all the age groups, regardless of the microenvironments. These findings from this study may provide a benchmark for future efforts to ensure the safety of indoor dust for the local residents.
Collapse
Affiliation(s)
- Jianlei Yang
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia; Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yern Chee Ching
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan.
| |
Collapse
|
3
|
Cui M, Pan H, Fang D, Sun H, Qiao S, Pan W. Exploration and evaluation of dynamic dose-control platform for pediatric medicine based on Drop-on-Powder 3D printing technology. Int J Pharm 2021; 596:120201. [PMID: 33539997 DOI: 10.1016/j.ijpharm.2021.120201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022]
Abstract
Patient responses to doses vary widely, and affording limited doses to such a diverse population will inevitably yield unsatisfactory therapeutic effects and even adverse effects. In Particular, there is an urgent demand for a dynamic dose-control platform for pediatric patients, many of whom require diverse doses and flexible dose adjustments. The aim of this study was to explore the possibility of using a drop-on-powder (DoP) technology-based desktop 3D printer to build a dynamic dose-control platform for theophylline (TP) and metoprolol tartrate (MT). In addition, the impact of drug loading patterns on the accuracy of dose regulation was also assessed. All of the printed tablets exhibited good mechanical properties and satisfactory structural integrity. On printing tablets with target drug doses, the accuracy was in the range of 91.2~108% with a small variation coefficient in the range of 0.5~3.2%. Compared with traditional divided-dose methods, drop-on-powder 3D printing technology exhibited higher accuracy in dose regulation, but had less impact on the in vitro drug release behavior. The results in this work clearly indicate the possibility and ability of DoP technology as a promising method for constructing a dynamic dose-control platform for the fabrication of personalized medicines for pediatric patients.
Collapse
Affiliation(s)
- Mengsuo Cui
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Dongyang Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Haowei Sun
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Sen Qiao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Weisan Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
4
|
Applying Biopharmaceutical Classification System criteria to predict the potential effect of Cremophor ® RH 40 on fexofenadine bioavailability at higher doses. Ther Deliv 2020; 11:447-464. [PMID: 32715985 DOI: 10.4155/tde-2020-0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To study the impact of various permeability enhancers on fexofenadine bioavailability. Furthermore, to predict the potential effect of Cremophor® RH 40 on fexofenadine pharmacokinetics at higher doses using Biopharmaceutical Classification System criteria. Experimental methods: The effect of the dose increase (60-360 mg) on the dissolution and permeability behavior of fexofenadine-Cremophor RH 40 formulations was studied in humans. The Biopharmaceutical Classification System criteria of the drug was determined. Results & conclusion: Cremophor RH 40 improved the dissolution and bioavailability of fexofenadine. The pharmacokinetics increased linearly with the dose increase. Absorption number (An) was significantly increased after addition of Cremophor RH 40 in comparison to an unprocessed drug. Similar An values were observed throughout the same dose range. The dose number (D0) values were <1 whereas, all the dissolution number (Dn) values were >1 at the same dose level.
Collapse
|
5
|
Cheng L, Gao S, Ouyang D, Wang H, Wang Y, Pan W, Yang X. Release Mechanism Between Ion Osmotic Pressure and Drug Release in Ionic-Driven Osmotic Pump Tablets (I). AAPS PharmSciTech 2018; 19:803-811. [PMID: 29019066 DOI: 10.1208/s12249-017-0900-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/26/2017] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to develop an authentic ionic-driven osmotic pump system and investigate the release mechanism, simultaneously exploring the in vitro and in vivo correlation of the ionic-driven osmotic pump tablet. A comparison of the ionic-driven and conventional theophylline osmotic pump, the influence of pH and the amount of sodium chloride on drug release, the relationship between the ionic osmotic pressure and the drug release, and the pharmacokinetics experiment in beagle dogs were investigated. Consequently, the similarity factor (f 2 ) between the novel and conventional theophylline osmotic pump tablet was 60.18, which indicated a similar drug-release behavior. Also, the release profile fitted a zero-order kinetic model. The relative bioavailability of the ionic-driven osmotic pump to the conventional osmotic pump calculated from the AUC (0-∞) was 93.6% and the coefficient (R = 0.9945) confirmed that the ionic-driven osmotic pump exhibited excellent IVIVC. The driving power of the ionic-driven osmotic pump was produced only by ions, which was strongly dependent on the ion strength, and a novel formula for the ionic-driven osmotic pump was derived which indicated that the drug-release rate was proportional to the ionic osmotic pressure and the sodium chloride concentration. Significantly, the formula can predict the drug-release rate and release characteristics of theophylline ionic-driven osmotic pumps, guiding future modification of the ionic osmotic pump.
Collapse
|
6
|
Badawi AA, Hegazy MM, Louis D, Eldegwy MA. Solving manufacturing problems for L-carnitine-L-tartrate to improve the likelihood of successful product scale-up. ACTA PHARMACEUTICA 2017; 67:511-525. [PMID: 29337668 DOI: 10.1515/acph-2017-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
L-carnitine-L-tartrate, a non-essential amino acid, is hygroscopic. This causes a problem in tablet production due to pronounced adhesion of tablets to punches. A 33 full factorial design was adopted to suggest a tablet formulation. Three adsorbents were suggested (Aerosil 200, Aerosil R972, talc) to reduce stickiness at three concentrations (1, 3 and 5 %), and three fillers (mannitol, Avicel PH 101, Dibasic calcium phosphate) were chosen to prepare 27 formulations. Micromeritic properties of formulations were studied, and tablets were prepared by wet granulation. Absence of picking, sticking or capping, recording of sufficient hardness, acceptable friability and tablet ejection force indicated formulation success. The resulting formulation prepared using Avicel PH 101 and 1 % Aerosil 200 was submitted to further investigation in order to choose the most suitable compression conditions using a 33 full factorial design. Variables included compression force, tableting rate and magnesium stearate (lubricant) concentration. The formulation prepared at compression force of 25 kN, using 2 % magnesium stearate, at a production rate of 30 tablets/ minute, was found to be the most appropriate scale up candidate.
Collapse
Affiliation(s)
- Aliaa A. Badawi
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Cairo University Cairo , Egypt
| | - Mahmoud M. Hegazy
- Research & Development Department, Mepaco-Medifood Company, El Sharkia , Egypt
| | - Dina Louis
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Cairo University Cairo , Egypt
- Department of Pharmaceutics and Pharmaceutical Technology Faculty of Pharmacy and Drug Technology, Heliopolis University for Sustainable Development, Heliopolis , Egypt
| | - Mohammed A. Eldegwy
- Research & Development Department, Mepaco-Medifood Company, El Sharkia , Egypt
| |
Collapse
|
7
|
Aitipamula S, Wong ABH, Kanaujia P. Evaluating Suspension Formulations of Theophylline Cocrystals With Artificial Sweeteners. J Pharm Sci 2017; 107:604-611. [PMID: 28987500 DOI: 10.1016/j.xphs.2017.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022]
Abstract
Pharmaceutical cocrystals have garnered significant interest as potential solids to address issues associated with formulation development of drug substances. However, studies concerning the understanding of formulation behavior of cocrystals are still at the nascent stage. We present results of our attempts to evaluate suspension formulations of cocrystals of an antiasthmatic drug, theophylline, with 2 artificial sweeteners. Stability, solubility, drug release, and taste of the suspension formulations were evaluated. Suspension that contained cocrystal with acesulfame showed higher drug release rate, while a cocrystal with saccharin showed a significant reduction in drug release rate. The cocrystal with saccharin was found stable in suspension for over 9 weeks at accelerated test condition; in contrast, the cocrystal with acesulfame was found unstable. Taste analysis using an electronic taste-sensing system revealed improved sweetness of the suspension formulations with cocrystals. Theophylline has a narrow therapeutic index with a short half-life which necessitates frequent dosing. This adversely impacts patient compliance and enhances risk of gastrointestinal and cardiovascular adverse effects. The greater thermodynamic stability, sweetness, and sustained drug release of the suspension formulation of theophylline-saccharin could offer an alternative solution to the short half-life of theophylline and make it a promising formulation for treating asthmatic pediatric and geriatric patients.
Collapse
Affiliation(s)
- Srinivasulu Aitipamula
- Crystallization & Formulation Science, Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island 627833, Singapore.
| | - Annie B H Wong
- Crystallization & Formulation Science, Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island 627833, Singapore
| | - Parijat Kanaujia
- Crystallization & Formulation Science, Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island 627833, Singapore
| |
Collapse
|
8
|
Nart V, Beringhs AO, França MT, de Espíndola B, Pezzini BR, Stulzer HK. Carnauba wax as a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of highly soluble drugs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:250-257. [DOI: 10.1016/j.msec.2016.07.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/24/2016] [Accepted: 07/26/2016] [Indexed: 10/24/2022]
|
9
|
Oliveira EGD, Campos RDS, Machado AS, Pereira JF, Araújo TGD. Avaliação da Goma Guar no desenvolvimento de comprimidos matriciais de liberação controlada de teofilina. POLIMEROS 2015. [DOI: 10.1590/0104-1428.1756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resumo O objetivo desse estudo foi formular e avaliar comprimidos de liberação controlada. Comprimidos de liberação controlada de teofilina foram preparadas pelo método de compressão direta usando dois polímeros como, o HPMC K 100M (polímero hidrofílico) e a Goma Guar (Polímero natural), isolado ou em mistura (GG:HPMC 3:1) e GG:HPMC 1:3). Os comprimidos foram caracterizados através do peso médio, diâmetro, altura, dureza, friabilidade. Todos os resultados estiveram em conformidade com os limites aceitáveis. O ensaio de intumescimento foi realizado em água destilada durante 4 horas, sendo determinado pela diferença de peso do comprimido seco e intumescido. O ensaio de dissolução foi realizado em água destilada (900 mL, 37 ± 0,5ºC, 50 rpm, aparato II) durante 8 horas. Os resultados demonstraram que a Goma guar isolada não possui capacidade de retardar a liberação da teofilina por 8 horas. Comprimidos matriciais contendo GG:HPMC (3:1) apresentaram um melhor controle de liberação da teofilina.
Collapse
|
10
|
Pawar HA, Lalitha K, Ruckmani K. Alginate beads of Captopril using galactomannan containing Senna tora gum, guar gum and locust bean gum. Int J Biol Macromol 2015; 76:119-31. [DOI: 10.1016/j.ijbiomac.2015.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/02/2023]
|
11
|
Ali T, Shoaib MH, Yousuf RI, Jabeen S, Muhammad IN, Tariq A. Use of hydrophilic and hydrophobic polymers for the development of controlled release tizanidine matrix tablets. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502014000400016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2) results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.
Collapse
|