VanBenschoten H, Yao S, Jensen JT, Woodrow KA. Drug Eluting Embolization Particles for Permanent Contraception.
ACS Biomater Sci Eng 2022;
8:2995-3009. [PMID:
35749682 PMCID:
PMC9277594 DOI:
10.1021/acsbiomaterials.2c00357]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Medical technology
that blocks the fallopian tubes nonsurgically
could increase access to permanent contraception and address current
unmet needs in family planning. To achieve total occlusion of the
fallopian tube via scar tissue formation, acute trauma to the tubal
epithelium must first occur followed by a sustained and ultimately
fibrotic inflammatory response. Here, we developed drug-eluting fiber-based
microparticles that provide tunable dose and release of potent sclerosing
agents. This fabrication strategy demonstrates high encapsulation
of physicochemically diverse agents and the potential for scalable
manufacturing by utilizing free-surface electrospinning to generate
material for fiber micronization. Manipulation of nanofiber formulation
such as drug loading, drug hydrophobicity, polymer hydrophobicity,
and crystallinity allowed for modulation of the sustained release
properties of our fiber microparticles. We assessed various fibrous
microparticle formulations in vivo using a newly
developed and validated guinea pig model for contraception. We found
that fiber microparticles with bolus release doxycycline effectively
elicited acute trauma and those formulated with highly loaded phenyl
benzoate caused sustained inflammation in the target organs. The demonstrated
potency of these electrospun microparticles, as well as their embolic
size and shape, suggests potential for proximal agglomeration and
inflammatory activity in the fallopian tubes following transcervical
delivery.
Collapse