1
|
Manzoor S, Qasim F, Ashraf MW, Tayyaba S, Tariq N, Herrera-May AL, Delgado-Alvarado E. Simulation and Analysis of Anodized Aluminum Oxide Membrane Degradation. SENSORS (BASEL, SWITZERLAND) 2023; 23:9792. [PMID: 38139637 PMCID: PMC10747657 DOI: 10.3390/s23249792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Microelectromechanical systems (MEMS)-based filter with microchannels enables the removal of various microorganisms, including viruses and bacteria, from fluids. Membranes with porous channels can be used as filtration interfaces in MEMS hemofilters or mini-dialyzers. The main problems associated with the filtration process are optimization of membrane geometry and fouling. A nanoporous aluminum oxide membrane was fabricated using an optimized two-step anodization process. Computational strength modeling and analysis of the membrane with specified parameters were performed using the ANSYS structural module. A fuzzy simulation was performed for the numerical analysis of flux through the membrane. The membrane was then incorporated with the prototype for successive filtration. The fluid flux and permeation analysis of the filtration process have been studied. Scanning electron microscope (SEM) micrographs of membranes have been obtained before and after the filtration cycles. The SEM results indicate membrane fouling after multiple cycles, and thus the flux is affected. This type of fabricated membrane and setup are suitable for the separation and purification of various fluids. However, after several filtration cycles, the membrane was degraded. It requires a prolonged chemical cleaning. High-density water has been used for filtration purposes, so this MEMS-based filter can also be used as a mini-dialyzer and hemofilter in various applications for filtration. Such a demonstration also opens up a new strategy for maximizing filtration efficiency and reducing energy costs for the filtration process by using a layered membrane setup.
Collapse
Affiliation(s)
- Saher Manzoor
- Department of Electronics, Institute of Physics, GC University Lahore, Lahore 54000, Pakistan; (S.M.); (F.Q.)
| | - Faheem Qasim
- Department of Electronics, Institute of Physics, GC University Lahore, Lahore 54000, Pakistan; (S.M.); (F.Q.)
| | - Muhammad Waseem Ashraf
- Department of Electronics, Institute of Physics, GC University Lahore, Lahore 54000, Pakistan; (S.M.); (F.Q.)
| | - Shahzadi Tayyaba
- Department of Information Sciences, Division of Science and Technology, University of Education, Township Campus, Lahore 54000, Pakistan
| | - Nimra Tariq
- Department of Physics and Mathematics, Faculty of Sciences, The Superior University Lahore, Lahore 54000, Pakistan;
| | - Agustín L. Herrera-May
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Rio 94294, Mexico; (A.L.H.-M.); (E.D.-A.)
| | - Enrique Delgado-Alvarado
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Rio 94294, Mexico; (A.L.H.-M.); (E.D.-A.)
| |
Collapse
|
2
|
Kulkarni D, Damiri F, Rojekar S, Zehravi M, Ramproshad S, Dhoke D, Musale S, Mulani AA, Modak P, Paradhi R, Vitore J, Rahman MH, Berrada M, Giram PS, Cavalu S. Recent Advancements in Microneedle Technology for Multifaceted Biomedical Applications. Pharmaceutics 2022; 14:1097. [PMID: 35631683 PMCID: PMC9144002 DOI: 10.3390/pharmaceutics14051097] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Microneedle (MNs) technology is a recent advancement in biomedical science across the globe. The current limitations of drug delivery, like poor absorption, low bioavailability, inadequate skin permeation, and poor biodistribution, can be overcome by MN-based drug delivery. Nanotechnology made significant changes in fabrication techniques for microneedles (MNs) and design shifted from conventional to novel, using various types of natural and synthetic materials and their combinations. Nowadays, MNs technology has gained popularity worldwide in biomedical research and drug delivery technology due to its multifaceted and broad-spectrum applications. This review broadly discusses MN's types, fabrication methods, composition, characterization, applications, recent advancements, and global intellectual scenarios.
Collapse
Affiliation(s)
- Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India;
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh;
| | - Dipali Dhoke
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India;
| | - Shubham Musale
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Ashiya A. Mulani
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Pranav Modak
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Roshani Paradhi
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Jyotsna Vitore
- National Institute of Pharmaceutical Education and Research, Ahmedabad 160062, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
3
|
Microelectromechanical Systems (MEMS) for Biomedical Applications. MICROMACHINES 2022; 13:mi13020164. [PMID: 35208289 PMCID: PMC8875460 DOI: 10.3390/mi13020164] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023]
Abstract
The significant advancements within the electronics miniaturization field have shifted the scientific interest towards a new class of precision devices, namely microelectromechanical systems (MEMS). Specifically, MEMS refers to microscaled precision devices generally produced through micromachining techniques that combine mechanical and electrical components for fulfilling tasks normally carried out by macroscopic systems. Although their presence is found throughout all the aspects of daily life, recent years have witnessed countless research works involving the application of MEMS within the biomedical field, especially in drug synthesis and delivery, microsurgery, microtherapy, diagnostics and prevention, artificial organs, genome synthesis and sequencing, and cell manipulation and characterization. Their tremendous potential resides in the advantages offered by their reduced size, including ease of integration, lightweight, low power consumption, high resonance frequency, the possibility of integration with electrical or electronic circuits, reduced fabrication costs due to high mass production, and high accuracy, sensitivity, and throughput. In this context, this paper aims to provide an overview of MEMS technology by describing the main materials and fabrication techniques for manufacturing purposes and their most common biomedical applications, which have evolved in the past years.
Collapse
|
4
|
Tajeddin A, Mustafaoglu N. Design and Fabrication of Organ-on-Chips: Promises and Challenges. MICROMACHINES 2021; 12:1443. [PMID: 34945293 PMCID: PMC8707724 DOI: 10.3390/mi12121443] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
The advent of the miniaturization approach has influenced the research trends in almost all disciplines. Bioengineering is one of the fields benefiting from the new possibilities of microfabrication techniques, especially in cell and tissue culture, disease modeling, and drug discovery. The limitations of existing 2D cell culture techniques, the high time and cost requirements, and the considerable failure rates have led to the idea of 3D cell culture environments capable of providing physiologically relevant tissue functions in vitro. Organ-on-chips are microfluidic devices used in this context as a potential alternative to in vivo animal testing to reduce the cost and time required for drug evaluation. This emerging technology contributes significantly to the development of various research areas, including, but not limited to, tissue engineering and drug discovery. However, it also brings many challenges. Further development of the technology requires interdisciplinary studies as some problems are associated with the materials and their manufacturing techniques. Therefore, in this paper, organ-on-chip technologies are presented, focusing on the design and fabrication requirements. Then, state-of-the-art materials and microfabrication techniques are described in detail to show their advantages and also their limitations. A comparison and identification of gaps for current use and further studies are therefore the subject of the final discussion.
Collapse
Affiliation(s)
- Alireza Tajeddin
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34596, Istanbul, Turkey;
| | - Nur Mustafaoglu
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34596, Istanbul, Turkey;
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla 34596, Istanbul, Turkey
| |
Collapse
|
5
|
Xie X, Maharjan S, Liu S, Zhang YS, Livermore C. A Modular, Reconfigurable Microfabricated Assembly Platform for Microfluidic Transport and Multitype Cell Culture and Drug Testing. MICROMACHINES 2019; 11:E2. [PMID: 31861298 PMCID: PMC7020019 DOI: 10.3390/mi11010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023]
Abstract
Modular microfluidics offer the opportunity to combine the precise fluid control, rapid sample processing, low sample and reagent volumes, and relatively lower cost of conventional microfluidics with the flexible reconfigurability needed to accommodate the requirements of target applications such as drug toxicity studies. However, combining the capabilities of fully adaptable modular microelectromechanical systems (MEMS) assembly with the simplicity of conventional microfluidic fabrication remains a challenge. A hybrid polydimethylsiloxane (PDMS)-molding/photolithographic process is demonstrated to rapidly fabricate LEGO®-like modular blocks. The blocks are created with different sizes that interlock via tongue-and-groove joints in the plane and stack via interference fits out of the plane. These miniature strong but reversible connections have a measured resistance to in-plane and out-of-plane forces of up to >6000× and >1000× the weight of the block itself, respectively. The LEGO®-like interference fits enable O-ring-free microfluidic connections that withstand internal fluid pressures of >120 kPa. A single layer of blocks is assembled into LEGO®-like cell culture plates, where the in vitro biocompatibility and drug toxicity to lung epithelial adenocarcinoma cells and hepatocellular carcinoma cells cultured in the modular microwells are measured. A double-layer block structure is then assembled so that a microchannel formed at the interface between layers connects two microwells. Breast tumor cells and hepatocytes cultured in the coupled wells demonstrate interwell migration as well as the simultaneous effects of a single drug on the two cell types.
Collapse
Affiliation(s)
- Xin Xie
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA;
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA;
| | - Sushila Maharjan
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA;
- Research Institute for Bioscience and Biotechnology, Nakkhu-4, Lalitpur 44600, Nepal
| | - Sanwei Liu
- MEMS Sensors and Actuators Laboratory, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA;
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA;
| | - Carol Livermore
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
6
|
Xu Y, Hu X, Kundu S, Nag A, Afsarimanesh N, Sapra S, Mukhopadhyay SC, Han T. Silicon-Based Sensors for Biomedical Applications: A Review. SENSORS 2019; 19:s19132908. [PMID: 31266148 PMCID: PMC6651638 DOI: 10.3390/s19132908] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 01/20/2023]
Abstract
The paper highlights some of the significant works done in the field of medical and biomedical sensing using silicon-based technology. The use of silicon sensors is one of the pivotal and prolonged techniques employed in a range of healthcare, industrial and environmental applications by virtue of its distinct advantages over other counterparts in Microelectromechanical systems (MEMS) technology. Among them, the sensors for biomedical applications are one of the most significant ones, which not only assist in improving the quality of human life but also help in the field of microfabrication by imparting knowledge about how to develop enhanced multifunctional sensing prototypes. The paper emphasises the use of silicon, in different forms, to fabricate electrodes and substrates for the sensors that are to be used for biomedical sensing. The electrical conductivity and the mechanical flexibility of silicon vary to a large extent depending on its use in developing prototypes. The article also explains some of the bottlenecks that need to be dealt with in the current scenario, along with some possible remedies. Finally, a brief market survey is given to estimate a probable increase in the usage of silicon in developing a variety of biomedical prototypes in the upcoming years.
Collapse
Affiliation(s)
- Yongzhao Xu
- School of Electronic Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiduo Hu
- School of Electronic Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Sudip Kundu
- CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal 713209, India
| | - Anindya Nag
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523106, China.
| | | | - Samta Sapra
- School of Engineering, Macquarie University, Sydney 2109, Australia
| | | | - Tao Han
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523106, China
| |
Collapse
|
7
|
Suryawanshi PL, Gumfekar SP, Bhanvase BA, Sonawane SH, Pimplapure MS. A review on microreactors: Reactor fabrication, design, and cutting-edge applications. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.03.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Lepowsky E, Amin R, Tasoglu S. Assessing the Reusability of 3D-Printed Photopolymer Microfluidic Chips for Urine Processing. MICROMACHINES 2018; 9:E520. [PMID: 30424453 PMCID: PMC6215198 DOI: 10.3390/mi9100520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 11/25/2022]
Abstract
Three-dimensional (3D) printing is emerging as a method for microfluidic device fabrication boasting facile and low-cost fabrication, as compared to conventional fabrication approaches, such as photolithography, for poly(dimethylsiloxane) (PDMS) counterparts. Additionally, there is an increasing trend in the development and implementation of miniaturized and automatized devices for health monitoring. While nonspecific protein adsorption by PDMS has been studied as a limitation for reusability, the protein adsorption characteristics of 3D-printed materials have not been well-studied or characterized. With these rationales in mind, we study the reusability of 3D-printed microfluidics chips. Herein, a 3D-printed cleaning chip, consisting of inlets for the sample, cleaning solution, and air, and a universal outlet, is presented to assess the reusability of a 3D-printed microfluidic device. Bovine serum albumin (BSA) was used a representative urinary protein and phosphate-buffered solution (PBS) was chosen as the cleaning agent. Using the 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA) fluorescence detection method, the protein cross-contamination between samples and the protein uptake of the cleaning chip were assessed, demonstrating a feasible 3D-printed chip design and cleaning procedure to enable reusable microfluidic devices. The performance of the 3D-printed cleaning chip for real urine sample handling was then validated using a commercial dipstick assay.
Collapse
Affiliation(s)
- Eric Lepowsky
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Reza Amin
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Savas Tasoglu
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.
- Institute for Collaboration on Health, Intervention, and Policy, University of Connecticut, Storrs, CT 06269, USA.
- The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
9
|
Yesil-Celiktas O, Hassan S, Miri AK, Maharjan S, Al-kharboosh R, Quiñones-Hinojosa A, Zhang YS. Mimicking Human Pathophysiology in Organ-on-Chip Devices. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800109] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ozlem Yesil-Celiktas
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Bioengineering; Faculty of Engineering; Ege University; Bornova-Izmir 35100 Turkey
| | - Shabir Hassan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| | - Amir K. Miri
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Mechanical Engineering Rowan University; 401 North Campus Drive Glassboro NJ 08028 USA
| | - Sushila Maharjan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Research Institute for Bioscience and Biotechnology; Nakkhu-4 Lalitpur 44600 Nepal
| | - Rawan Al-kharboosh
- Mayo Clinic College of Medicine; Mayo Clinic Graduate School; Neuroscience, NBD Track Rochester MN 55905 USA
- Department of Neurosurgery, Oncology, Neuroscience; Mayo Clinic; Jacksonville FL 32224 USA
| | | | - Yu Shrike Zhang
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| |
Collapse
|
10
|
Lepowsky E, Tasoglu S. Emerging Anti-Fouling Methods: Towards Reusability of 3D-Printed Devices for Biomedical Applications. MICROMACHINES 2018; 9:E196. [PMID: 30424129 PMCID: PMC6187557 DOI: 10.3390/mi9040196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/07/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
Abstract
Microfluidic devices are used in a myriad of biomedical applications such as cancer screening, drug testing, and point-of-care diagnostics. Three-dimensional (3D) printing offers a low-cost, rapid prototyping, efficient fabrication method, as compared to the costly-in terms of time, labor, and resources-traditional fabrication method of soft lithography of poly(dimethylsiloxane) (PDMS). Various 3D printing methods are applicable, including fused deposition modeling, stereolithography, and photopolymer inkjet printing. Additionally, several materials are available that have low-viscosity in their raw form and, after printing and curing, exhibit high material strength, optical transparency, and biocompatibility. These features make 3D-printed microfluidic chips ideal for biomedical applications. However, for developing devices capable of long-term use, fouling-by nonspecific protein absorption and bacterial adhesion due to the intrinsic hydrophobicity of most 3D-printed materials-presents a barrier to reusability. For this reason, there is a growing interest in anti-fouling methods and materials. Traditional and emerging approaches to anti-fouling are presented in regard to their applicability to microfluidic chips, with a particular interest in approaches compatible with 3D-printed chips.
Collapse
Affiliation(s)
- Eric Lepowsky
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Savas Tasoglu
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.
- Institute for Collaboration on Health, Intervention, and Policy, University of Connecticut, Storrs, CT 06269, USA.
- The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
11
|
Barazani B, Warnat S, Hubbard T, MacIntosh AJ. Mechanical Characterization of Individual Brewing Yeast Cells Using Microelectromechanical Systems (MEMS): Cell Rupture Force and Stiffness. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2017-3464-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Bruno Barazani
- Dalhousie University, Mechanical Engineering Department, Halifax, NS B3H 4R2 Canada
| | - Stephan Warnat
- Dalhousie University, Mechanical Engineering Department, Halifax, NS B3H 4R2 Canada
| | - Ted Hubbard
- Dalhousie University, Mechanical Engineering Department, Halifax, NS B3H 4R2 Canada
| | - Andrew J. MacIntosh
- University of Florida, Food Science and Human Nutrition Department, Gainesville, FL 32611-0370, U.S.A
| |
Collapse
|
12
|
Canadas RF, Marques AP, Reis RL, Oliveira JM. Bioreactors and Microfluidics for Osteochondral Interface Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:395-420. [PMID: 29736584 DOI: 10.1007/978-3-319-76735-2_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cell culture techniques are in the base of any biology-based science. The standard techniques are commonly static platforms as Petri dishes, tissue culture well plates, T-flasks, or well plates designed for spheroids formation. These systems faced a paradigm change from 2D to 3D over the current decade driven by the tissue engineering (TE) field. However, 3D static culture approaches usually suffer from several issues as poor homogenization of the formed tissues and development of a necrotic center which limits the size of in vitro tissues to hundreds of micrometers. Furthermore, for complex tissues as osteochondral (OC), more than recovering a 3D environment, an interface needs to be replicated. Although 3D cell culture is already the reality adopted by a newborn market, a technological revolution on cell culture devices needs a further step from static to dynamic already considering 3D interfaces with dramatic importance for broad fields such as biomedical, TE, and drug development. In this book chapter, we revised the existing approaches for dynamic 3D cell culture, focusing on bioreactors and microfluidic systems, and the future directions and challenges to be faced were discussed. Basic principles, advantages, and challenges of each technology were described. The reported systems for OC 3D TE were focused herein.
Collapse
Affiliation(s)
- Raphaël F Canadas
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal.
| | - J Miguel Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
13
|
Klosterhoff BS, Tsang M, She D, Ong KG, Allen MG, Willett NJ, Guldberg RE. Implantable Sensors for Regenerative Medicine. J Biomech Eng 2017; 139:2594421. [PMID: 27987300 DOI: 10.1115/1.4035436] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Indexed: 01/05/2023]
Abstract
The translation of many tissue engineering/regenerative medicine (TE/RM) therapies that demonstrate promise in vitro are delayed or abandoned due to reduced and inconsistent efficacy when implemented in more complex and clinically relevant preclinical in vivo models. Determining mechanistic reasons for impaired treatment efficacy is challenging after a regenerative therapy is implanted due to technical limitations in longitudinally measuring the progression of key environmental cues in vivo. The ability to acquire real-time measurements of environmental parameters of interest including strain, pressure, pH, temperature, oxygen tension, and specific biomarkers within the regenerative niche in situ would significantly enhance the information available to tissue engineers to monitor and evaluate mechanisms of functional healing or lack thereof. Continued advancements in material and fabrication technologies utilized by microelectromechanical systems (MEMSs) and the unique physical characteristics of passive magnetoelastic sensor platforms have created an opportunity to implant small, flexible, low-power sensors into preclinical in vivo models, and quantitatively measure environmental cues throughout healing. In this perspective article, we discuss the need for longitudinal measurements in TE/RM research, technical progress in MEMS and magnetoelastic approaches to implantable sensors, the potential application of implantable sensors to benefit preclinical TE/RM research, and the future directions of collaborative efforts at the intersection of these two important fields.
Collapse
Affiliation(s)
- Brett S Klosterhoff
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332;Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Melissa Tsang
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Didi She
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Keat Ghee Ong
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Mark G Allen
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332;Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Nick J Willett
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332;Department of Orthopaedics, Emory University, Atlanta, GA 30303;Atlanta Veteran's Affairs Medical Center, Decatur, GA 30033;Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Robert E Guldberg
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332;Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
14
|
Abstract
The development of microfabricated devices that will provide high-throughput quantitative data and high resolution in a fast, repeatable and reproducible manner is essential for plant biology research.
Collapse
Affiliation(s)
- Meltem Elitaş
- Department of Mechatronics
- Faculty of Engineering and Natural Sciences
- Sabanci University
- 34956, Istanbul
- Turkey
| | - Meral Yüce
- Nanotechnology Research and Application Centre
- Sabanci University
- 34956, Istanbul
- Turkey
| | - Hikmet Budak
- Department of Molecular Biology
- Genetics and Bioengineering
- Faculty of Engineering and Natural Sciences
- Sabanci University
- 34956, Istanbul
| |
Collapse
|
15
|
Using a Microfluidic Gradient Generator to Characterize BG-11 Medium for the Growth of Cyanobacteria Synechococcus elongatus PCC7942. MICROMACHINES 2015. [DOI: 10.3390/mi6111454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|