1
|
Azouz AA, Tohamy MA, Ali FEM, Mahmoud HM. Enhanced eNOS/nitric oxide production by nebivolol interferes with TGF-β1/Smad3 signaling and collagen I deposition in the kidney after prolonged tacrolimus administration. Life Sci 2024; 355:122995. [PMID: 39159720 DOI: 10.1016/j.lfs.2024.122995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
AIMS Tacrolimus is an effective immunosuppressant commonly used post-transplantation and in certain autoimmune diseases. However, its long-term administration is associated with renal fibrosis through transforming growth factor-beta/suppressor of mother against decapentaplegic (TGF-β/Smad) signaling that could be partly attributed to endothelial dysfunction alongside decreased nitric oxide (NO) release. Our study aimed to investigate the prospective renal anti-fibrotic effect of enhanced NO production by nebivolol against tacrolimus-stimulated TGF-β1/Smad3 signaling. MATERIALS AND METHODS To illustrate the proposed mechanism of nebivolol, Nω-nitro-L-arginine methyl ester (L-NAME); nitric oxide synthase inhibitor; was co-administered with nebivolol. Rats were treated for 30 days as control, tacrolimus, tacrolimus/nebivolol, tacrolimus/L-NAME, and tacrolimus/nebivolol/L-NAME groups. KEY FINDINGS Our results revealed that renal NO content was reduced in tacrolimus-treated rats, while treatment with tacrolimus/nebivolol enhanced NO content via up-regulated endothelial nitric oxide synthase (eNOS), but down-regulated inducible nitric oxide synthase (iNOS) expression. That participated in the inhibition of TGF-β1/Smad3 signaling induced by tacrolimus, where the addition of L-NAME abolished the defensive effects of nebivolol. Subsequently, the deposition of collagen I and alpha-smooth muscle actin (α-SMA) was retarded by nebivolol, emphasized by reduced Masson's trichrome staining. In accordance, there was a strong negative correlation between eNOS and both TGF-β1 and collagen I protein expression. The protective effects of nebivolol were further confirmed by the improvement in kidney function biomarkers and histological features. SIGNIFICANCE It can be suggested that treatment with nebivolol along with tacrolimus could effectively suppress renal TGF-β1/Smad3 fibrotic signaling via the enhancement of endothelial NO production, thus curbing renal fibrosis development.
Collapse
Affiliation(s)
- Amany A Azouz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Mohamed A Tohamy
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Heba M Mahmoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
2
|
Sarmadian R, Gilani A, Mehrtabar S, Mahrokhi Koushemehr S, Hakimzadeh Z, Yousefichaijan P. The renoprotective potential of montelukast: a scoping review. Ann Med Surg (Lond) 2024; 86:3568-3576. [PMID: 38846849 PMCID: PMC11152873 DOI: 10.1097/ms9.0000000000002085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/09/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Kidney damage can result from various factors, leading to structural and functional changes in the kidney. Acute kidney injury (AKI) refers to a sudden decline in kidney function, while chronic kidney disease involves a gradual deterioration lasting more than 3 months. Mechanisms of renal injury include impaired microcirculation, inflammation, and oxidative stress. Cysteinyl-leukotrienes (CysLTs) are inflammatory substances contributing to tissue damage. Montelukast, a leukotriene receptor antagonist, has shown potential renoprotective effects in experimental models of kidney injury. Methods The authors conducted a scoping review using PubMed, Scopus, and Web of Science databases to identify relevant studies investigating the impact of montelukast on renal diseases. Articles published until 2022 were included and evaluated for quality. Data extraction and analysis were performed based on predetermined inclusion criteria. Results The scoping review included 30 studies from 8 countries. Montelukast demonstrated therapeutic effects in various experimental models of nephrotoxicity and AKI induced by agents such as cisplatin, lipopolysaccharide, diclofenac, amikacin, Escherichia coli, cyclosporine, methotrexate, cobalt-60 gamma radiation, doxorubicin, and cadmium. Studies involving human subjects with nephrotic syndrome, pyelonephritis, and other renal diseases also reported positive outcomes with montelukast treatment. Montelukast exhibited anti-inflammatory, anti-apoptotic, antioxidant, and neutrophil-inhibiting properties, leading to improved kidney function and histopathological changes. Conclusions Montelukast shows promise as a renoprotective medication, particularly in early-stage kidney injury. Its ability to mitigate inflammation, oxidative stress, and neutrophil infiltration contributes to its therapeutic effects. Further research is needed to explore the clinical applications and mechanisms underlying the renoprotective action of montelukast.
Collapse
Affiliation(s)
| | | | - Saba Mehrtabar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan, Iran
| | | | | | | |
Collapse
|
3
|
Murphy C, Jennings P, Wilmes A. Transcriptomic profile of human iPSC-derived podocyte-like cells exposed to a panel of xenobiotics. Toxicol In Vitro 2024; 97:105804. [PMID: 38447685 DOI: 10.1016/j.tiv.2024.105804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Podocytes play a critical role in the formation and maintenance of the glomerular filtration barrier and injury to these cells can lead to a breakdown of the glomerular barrier causing permanent damage leading to progressive chronic kidney disease. Matured podocytes have little proliferative potential, which makes them critical cells from a health perspective, but also challenging cells to maintain in vitro. Differentiating podocyte-like cells from induced pluripotent stem cells (iPSC) provides a novel and continuous source of cells. Here, we investigated the effect of a 24-h exposure to eight compounds, including the known glomerular toxins doxorubicin and pamidronate, on transcriptomic alterations in iPSC derived podocytes. Doxorubicin (50 nM), pamidronate (50 μM), sodium arsenite (10 μM), and cyclosporine A (15 μM) had a strong impact on the transcriptome, gentamicin (450 μg/ml), lead chloride (15 μM) and valproic acid (500 μM) had a mild impact and busulfan (50 μM) exhibited no impact. Gene alterations and pathways analysis provided mechanistic insight for example, doxorubicin exposure affected the p53 pathway and dedifferentiation, pamidronate activated several pathways including HIF1alpha and sodium arsenite up-regulated oxidative stress and metal responses. The results demonstrate the applicability of iPSC derived podocytes for toxicological and mechanistic investigations.
Collapse
Affiliation(s)
- Cormac Murphy
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Abdel-Rahman DM, Messiha BAS, Ali FEM, Azouz AA. Regulation of renal nitric oxide and eNOS/iNOS expression by tadalafil participates in the mitigation of amphotericin B-induced renal injury: Down-regulation of NF-κB/iNOS/caspase-3 signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3141-3153. [PMID: 37891258 PMCID: PMC11074040 DOI: 10.1007/s00210-023-02787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Amphotericin B (AmB)-induced acute kidney injury (AKI) is a common health problem having an undesirable impact on its urgent therapeutic utility for fatal systemic fungal infections. Tadalafil (TAD), a phosphodiesterase-5 (PDE-5) inhibitor, has been observed to have a wide range of pharmacological actions, including nephroprotection. The study's objective was to examine the possible underlying protective mechanism of TAD against AmB-induced nephrotoxicity. Experimentally, animals were divided randomly into four groups: control, TAD (5 mg/kg/day; p.o.), AmB (18.5 mg/kg/day; i.p.), and TAD+AmB groups. Sera and tissue samples were processed for biochemical, molecular, and histological analyses. The biochemical investigations showed that TAD significantly ameliorated the increase of kidney function biomarkers (creatinine, urea, CysC, KIM-1) in serum, renal nitric oxide (NO), lipid peroxidation (MDA), and inflammatory cytokines (TNF-α, IL-6) in AmB-treated rats. Meanwhile, TAD significantly retarded AmB-induced decrease in serum magnesium, sodium, potassium, and renal glutathione content. Molecular analysis revealed that TAD reduced AmB-induced imbalance in the protein expression of eNOS/iNOS, which explains its regulatory effect on renal NO content. These results were also supported by the down-regulation of nuclear NF-κB p65 and cleaved caspase-3 protein expressions, as well as the improvement of histological features by TAD in AmB-treated rats. Therefore, it can be suggested that TAD could be a promising candidate for renoprotection against AmB-induced AKI. That could be partly attributed to its regulatory effect on renal eNOS/iNOS balance and NO, the inhibition of NF-κB p65 nuclear translocation, its downstream inflammatory cytokines and iNOS, and ultimately the inhibition of caspase-3-induced renal apoptosis.
Collapse
Affiliation(s)
- Doaa M Abdel-Rahman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | | | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Amany A Azouz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
5
|
Dogan T, Yildirim BA, Kapakin KAT. Investigation of the effects of crocin on inflammation, oxidative stress, apoptosis, NF-κB, TLR-4 and Nrf-2/HO-1 pathways in gentamicin-induced nephrotoxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104374. [PMID: 38246228 DOI: 10.1016/j.etap.2024.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
The primary limitation of gentamicin (Gm) treatment is its potential to induce nephrotoxicity, which can restrict both its duration and efficacy. This study aims to investigate the protective effects of Crocin (Cr) against Gm-induced nephrotoxicity and its underlying mechanisms, including inflammation, apoptosis, TLR-4, Nrf-2/HO-1 pathways. 36 Sprague Dawley rats were divided into 6 groups for the study. Group I received only saline. Groups II and III were administered 25 and 50 mg/kg of crocin, respectively. Group IV was treated with 80 mg/kg of Gm. Groups V and VI received 25 and 50 mg/kg of crocin, respectively, in addition to Gm administration. Crocin demonstrated protective effects on kidney tissue. It down-regulated the genes NF-κB, COX-2, TLR-4, Bax, and Caspase-3, while up-regulating Bcl-2, Nrf-2, and HO-1. In conclusion, these findings hold promise for the prevention of Gm-induced nephrotoxicity through the modulation of the Nrf-2/HO-1 pathway.
Collapse
Affiliation(s)
- Tuba Dogan
- Ataturk University, Veterinary Faculty, Biochemistry Department, Erzurum 25100, Turkey.
| | | | | |
Collapse
|
6
|
Hanna DA, Messiha BAS, Abo-Saif AA, Ali FEM, Azouz AA. Lysosomal membrane stabilization by imipramine attenuates gentamicin-induced renal injury: Enhanced LAMP2 expression, down-regulation of cytoplasmic cathepsin D and tBid/cytochrome c/cleaved caspase-3 apoptotic signaling. Int Immunopharmacol 2024; 126:111179. [PMID: 37995569 DOI: 10.1016/j.intimp.2023.111179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Nephrotoxicity is a serious complication commonly encountered with gentamicin (GTM) treatment. Permeabilization of lysosomes with subsequent cytoplasmic release of GTM and cathepsins is considered a crucial issue in progression of GTM toxicity. This study was designed to evaluate the prospective defensive effect of lysosomal membrane stabilization by imipramine (IMP) against GTM nephrotoxicity in rats. GTM (30 mg/kg/h) was intraperitoneally administered over 4 h daily (120 mg/kg/day) for 7 days. IMP (30 mg/kg/day) was orally administered for 14 days; starting 7 days before and then concurrently with GTM. On 15th day, samples (urine, blood, kidney) were collected to estimate biomarkers of kidney function, lysosomal stability, apoptosis, and inflammation. IMP administration to GTM-treated rats ameliorated the disruption in lysosomal membrane stability induced by GTM. That was evidenced by enhanced renal protein expressions of LAMP2 and PI3K, but reduced cathepsin D cytoplasmic expression in kidney sections. Besides, IMP guarded against apoptosis in GTM-treated rats by down-regulation of the pro-apoptotic (tBid, Bax, cytochrome c) and the effector cleaved caspase-3 expressions, while the anti-apoptotic Bcl-2 expression was enhanced. Additionally, the inflammatory cascade p38 MAPK/NF-κB/TNF-α was attenuated in GTM + IMP group along with marked improvement in kidney function biomarkers, compared to GTM group. These findings were supported by the obvious improvement in histological architecture. Furthermore, in vitro enhancement of the antibacterial activity of GTM by IMP confers an additional benefit to their combination. Conclusively, lysosomal membrane stabilization by IMP with subsequent suppression of tBid/cytochrome c/cleaved caspase-3 apoptotic signaling could be a promising protective strategy against GTM nephrotoxicity.
Collapse
Affiliation(s)
- Dina A Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Basim A S Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Amany A Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
7
|
Hosny NM, Badary DM, Hareedy MS. A feasible HPTLC method for concurrent quantitation of allopurinol-montelukast co-therapy in plasma and evaluation of their hepatic and renal effects in rats: Analytical, biochemical, and histopathological study. J Pharm Biomed Anal 2023; 233:115439. [PMID: 37186992 DOI: 10.1016/j.jpba.2023.115439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
Recent studies presented the crucial role of montelukast (MON, a leukotriene receptor antagonist) against gouty arthritis and its protective effect on drug-induced liver and kidney injury. Allopurinol (ALO, a selective xanthine oxidase inhibitor) is also used for treatment of hyperuricemia, however, it induces hepatotoxicity and acute kidney injury. Therefore, this study introduces the first analytical/biochemical/histopathological assay for MON-ALO co-therapy and aims to: inspect the hepatic and renal impacts of ALO, MON and their combination in rats via biochemical and histopathological examinations, propose and validate a facile HPTLC method for concurrent estimation of ALO-MON binary mixture in human plasma, and employ this method to attain the targeted drugs in real rat plasma. First, the cited drugs in human plasma were simultaneously separated utilizing silica gel G 60 F254-TLC plates. The separated bands were scanned at 268 nm demonstrating appropriate linearities (50.0-2000.0 ng band-1 for each drug) and correlations (0.9986 and 0.9992 for ALO and MON, correspondingly). The calculated detection and quantitation limits, as well as recoveries confirmed the method's reliability. This procedure was validated, and the stability studies were achieved according to Bioanalytical Method Validation Guideline. This work was extended to investigate the possible hepatic and renal effects of ALO, MON and their co-therapy in rats. Using rat's gastric tube, the following was administered to four groups of male Wistar rats: Group Ia and Ib as control (received either saline or DMSO), Groups II, III, and IV were given MON, ALO, and MON+ALO, respectively. Good correlation between the measured biochemical parameters and the observed histopathological changes was encountered. Considerable drop in aspartate transaminase and alanine transaminase levels, in addition to lower liver damage changes were observed in the combination group compared to MON or ALO-treated groups. Regarding renal changes, ALO-MON co-therapy caused elevation in the serum creatinine and blood urea nitrogen levels when compared to controls and MON- or ALO-treated groups. Severe proteinaceous casts accumulation in kidney tubular lumen, severe congestion, and severe tubular necrosis were also noticed in the combination group. Lastly, this study suggests ALO-MON co-treatment not only as a preventive therapy against gouty arthritis but also as a new line to minimize ALO-induced hepatic injury. However, co-administration of ALO and MON should be further studied to assess the benefits and risks in various tissues, adjust the MON dosing, and monitor its nephrotoxic effect.
Collapse
Affiliation(s)
- Noha M Hosny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Dalia M Badary
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | | |
Collapse
|
8
|
Awdishu L, Joy MS. Endocytosis and Nephrotoxicity-It's a RAP! KIDNEY360 2023; 4:572-574. [PMID: 37229725 PMCID: PMC10371298 DOI: 10.34067/kid.0000000000000144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Linda Awdishu
- Division Head of Clinical Pharmacy, University of California, San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Director, Pharmaceutical Science Innovation and Commercialization, University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
9
|
Balaha MF, Alamer AA, Eisa AA, Aljohani HM. Shikonin Alleviates Gentamicin-Induced Renal Injury in Rats by Targeting Renal Endocytosis, SIRT1/Nrf2/HO-1, TLR-4/NF-κB/MAPK, and PI3K/Akt Cascades. Antibiotics (Basel) 2023; 12:antibiotics12050826. [PMID: 37237729 DOI: 10.3390/antibiotics12050826] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Gentamicin causes kidney injury due to its accumulation in proximal tubule epithelial cells via the megalin/cubilin/CLC-5 complex. Recently, shikonin has been shown to have potential anti-inflammatory, antioxidant, antimicrobial, and chloride channel-inhibiting effects. The current study investigated the alleviation of gentamicin-induced renal injury by shikonin while preserving its bactericidal effect. Nine-week-old Wistar rats were administered 6.25, 12.5, and 25 mg/kg/day shikonin orally, one hour after the i.p. injection of 100 mg/kg/day gentamicin for seven days. Shikonin significantly and dose-dependently alleviated gentamicin-induced renal injury, as revealed by restoring normal kidney function and histological architecture. Furthermore, shikonin restored renal endocytic function, as indicated by suppressing the elevated renal megalin, cubilin, and CLC-5 and enhancing the reduced NHE3 levels and mRNA expressions induced by gentamicin. These potentials could be attributed to the modulation of the renal SIRT1/Nrf2/HO-1, TLR-4/NF-κB/MAPK, and PI3K/Akt cascades, which enhanced the renal antioxidant system and suppressed renal inflammation and apoptosis, as indicated by enhancements of SIRT1, Nrf2, HO-1, GSH, SOD, TAC, Iκb-α, Bcl-2, PI3K, and Akt levels and mRNA expressions, with reduction of TLR-4, NF-κB, MAPK, IL-1β, TNF-α, MDA, iNOS, NO, cytochrome c, caspase-3, Bax levels, and Bax/Bcl-2 ratio. Therefore, shikonin is a promising therapeutic agent for alleviating gentamicin-induced renal injury.
Collapse
Affiliation(s)
- Mohamed F Balaha
- Clinical Pharmacy Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Tanta University, El-Gish Street, Tanta 31527, Egypt
| | - Ahmed A Alamer
- Clinical Pharmacy Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alaa A Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 41477, Saudi Arabia
- Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashim M Aljohani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madina 41477, Saudi Arabia
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
10
|
Azouz AA, Abdel-Rahman DM, Messiha BAS. Balancing renal Ang-II/Ang-(1-7) by xanthenone; an ACE2 activator; contributes to the attenuation of Ang-II/p38 MAPK/NF-κB p65 and Bax/caspase-3 pathways in amphotericin B-induced nephrotoxicity in rats. Toxicol Mech Methods 2023:1-11. [PMID: 36747322 DOI: 10.1080/15376516.2023.2177218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite the great importance of amphotericin B for the management of life-threatening systemic fungal infections, its nephrotoxic effect restricts its repeated administration. This study was designed to examine the prospective modulatory effects of xanthenone, an ACE2 activator, against amphotericin B nephrotoxicity. Male Wistar rats were allocated into four groups; control (1st), Xanthenone (2nd), Amphotericin B (3rd), and Xanthenone + Amphotericin B (4th). The second and fourth groups received xanthenone (2 mg/kg; s.c.) daily for 14 consecutive days. Amphotericin B (18.5 mg/kg; i.p.) was administered to the third and fourth groups daily starting from day 8. After 2 weeks, samples were withdrawn for analysis. The histopathological findings, molecular and biochemical markers showed that amphotericin B caused marked renal injury. Pretreatment with xanthenone ameliorated amphotericin B-induced deterioration in kidney function biomarkers (creatinine, urea, cystatin C, KIM-1) and guarded against the disturbance of serum electrolytes (Na+, K+, Mg2+) due to amphotericin B-induced tubular dysfunction. Besides, the ACE2 activator xanthenone-balanced renal Ang-II/Ang-(1-7), and so the inflammatory signaling p38 MAPK/NF-κB p65 and its downstream inflammatory cytokines (TNF-α, IL-6) were attenuated. Meanwhile, the anti-oxidant signaling Nrf2/HO-1 and glutathione content were preserved, but the lipid peroxidation marker MDA was declined. These regulatory effects of xanthenone eventually enhanced Bcl-2 (anti-apoptotic), but reduced Bax (pro-apoptotic) and cleaved caspase-3 (apoptotic executioner) protein expressions. Collectively, the regulatory effects of xanthenone on renal Ang-II/Ang-(1-7) could at least partially contribute to the mitigation of amphotericin B nephrotoxicity by attenuating inflammatory signaling, oxidative stress, and apoptosis, thus improving the tolerability to amphotericin B.
Collapse
Affiliation(s)
- Amany A Azouz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Doaa M Abdel-Rahman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|