1
|
Salem HF, Nafady MM, Khallaf RA, Abdel-Sattar AR, Abdel-Sattar HH, Eissa EM. Implementing losartan potassium-laden pegylated nanocubic vesicles as a novel nanoplatform to alleviate cisplatin-induced nephrotoxicity via blocking apoptosis and activating the wnt/β-catenin/TCF-4 pathway. Life Sci 2024; 354:122955. [PMID: 39122109 DOI: 10.1016/j.lfs.2024.122955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
AIMS Losartan potassium-laden pegylated nanocubic vesicles (LP-NCVs-PEG) have an intriguing kidney-targeted nanoplatform for acute renal injury via blocking apoptosis and activating wnt/β-catenin pathway. MAIN METHODS Utilizing a thin-film hydration methodology established on 42 full factorial design to produce LP loaded nanocubic formulations (LP-NCVs) which composed mainly from L-α-phosphatidylcholine and poloxamer. The optimization process was designed to select the formulation with maximum entrapment efficiency (EE %), maximum in-vitro drug release (Q8h), and minimum vesicle size (VS). The optimum formulation was then pegylated to obtain LP-NCVs-PEG formulation that shields NCVs from the harsh ecosystem of the stomach, improves their oral drug delivery performance and targets the proximal renal tubules with no systemic toxicity. Male albino rats were injected with Cisplatin (6 mg/kg, i.p.) alone or with LP-formulations (5 mg/kg/day). Kidney injury markers, inflammatory markers, apoptotic markers. Besides renal tissue expression of Wnt, β-Catenin, GSK-3β, renal RNA gene expression of TCF-4, LEF-1 and histopathology were also analyzed to display pharmacological study. KEY FINDINGS The pharmacokinetics studies demonstrated that LP-NCVs-PEG boosted LP bioavailability approximately 3.61 times compared to LP oral solution. Besides LP-NCVs-PEG may have an intriguing kidney-targeted nanoplatform for acute renal injury via decreased renal toxicity markers, renal expression of LEF-1, GSK3-β, caspase, TNF-α, NF-κB and TUNEL expression. Alternatively, increased renal tissue level of Bcl-2, wnt, β-catenin and TCF-4. SIGNIFICANCE LP-NCVs-PEG improved LP pharmacokinetics targeting the kidney and improved injury by activating wnt/β-catenin/TCF-4 pathway, blocking apoptosis, inflammation and renal toxicity markers suggesting it might be successful nephroprotective adjuvant therapy.
Collapse
Affiliation(s)
- Heba F Salem
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Mohamed M Nafady
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Nahda University Beni-Suef, Egypt.
| | - Rasha A Khallaf
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | | | - Hend Hassan Abdel-Sattar
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Nahda University Beni-Suef, Egypt.
| | - Essam M Eissa
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
2
|
Salem HF, Nafady MM, Eissa EM, Abdel-Sattar HH, Khallaf RA. Assembly of In-Situ Gel Containing Nano-Spanlastics of an Angiotensin II Inhibitor as a Novel Epitome for Hypertension Management: Factorial Design Optimization, In-vitro Gauging, Pharmacokinetics, and Pharmacodynamics Appraisal. AAPS PharmSciTech 2024; 25:115. [PMID: 38755324 DOI: 10.1208/s12249-024-02823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
More than 1 billion people worldwide suffer from hypertension; therefore, hypertension management has been categorized as a global health priority. Losartan potassium (LP) is an antihypertensive drug with a limited oral bioavailability of about 33% since it undergoes the initial metabolic cycle. Thus, nasal administration is a unique route to overcome first-pass metabolism. The investigation focused on the potential effects of LP-loaded spanlastic vesicles (SNVs) on LP pharmacodynamics and pharmacokinetic parameters, utilizing a thin-film hydration methodology established on a 3122 full factorial design. Entrapment efficiency (EE%) ranged from 39.8 ± 3.87.8 to 83.8 ± 2.92% for LP-SNVs. Vesicle size (VS) varied from 205.5 ± 6.5.10 to 445.1 ± 13.52 nm, and the percentage of LP released after 8 h (Q8h) ranged from 30.8 ± 3.10 to 68.8 ± 1.45%. LP permeated through the nasal mucosa during 24 h and flocculated from 194.1 ± 4.90 to 435.3 ± 13.53 µg/cm2. After twenty-four hours, the optimal LP-SNVs in-situ gel showed 2.35 times more permeation through the nasal mucosa than the LP solution. It also lowered systolic blood pressure, so it is thought to be better than the reference formulation in terms of pharmacodynamics. The pharmacokinetics studies demonstrated that the intranasal LP-SNVs gel boosted its bioavailability approximately 6.36 times compared to the oral LP solution. Our research showed that intranasal LP-SNVs could be a good nanoplatform because they are well-tolerated and have possible pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Heba F Salem
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed M Nafady
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Essam M Eissa
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hend Hassan Abdel-Sattar
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Rasha A Khallaf
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
3
|
Yasmin T, Mahmood A, Farooq M, Sarfraz RM, Boublia A, Rehman U, Ashraf MU, Bhutto JK, Ernst B, Albrahim M, Elboughdiri N, Yadav KK, Alreshidi MA, Ijaz H, Benguerba Y. Development and evaluation of a pH-responsive Mimosa pudica seed mucilage/β- cyclodextrin-co-poly(methacrylate) hydrogel for controlled drug delivery: In vitro and in vivo assessment. Int J Biol Macromol 2024; 268:131832. [PMID: 38663704 DOI: 10.1016/j.ijbiomac.2024.131832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
In this comprehensive investigation, a novel pH-responsive hydrogel system comprising mimosa seed mucilage (MSM), β-cyclodextrin (β-CD), and methacrylic acid (MAA) was developed via free radical polymerization technique to promote controlled drug delivery. The hydrogel synthesis involved strategic variations in polymer, monomer, and crosslinker content in fine-tuning its drug-release properties. The resultant hydrogel exhibited remarkable pH sensitivity, selectively liberating the model drug (Capecitabine = CAP) under basic conditions while significantly reducing release in an acidic environment. Morphological, thermal, and structural analyses proved that CAP has a porous texture, high stability, and an amorphous nature. In vitro drug release experiments showcased a sustained and controlled release profile. Optimum release (85.33 %) results were recorded over 24 h at pH 7.4 in the case of MMB9. Pharmacokinetic evaluation in healthy male rabbits confirmed bioavailability enhancement and sustained release capabilities. Furthermore, rigorous toxicity evaluations and histopathological analyses ensured the safety and biocompatibility of the hydrogel. This pH-triggered drug delivery system can be a promising carrier system for drugs involving frequent administrations.
Collapse
Affiliation(s)
- Tahira Yasmin
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan; Department of Pharmacy, University of Chakwal, Chakwal, Pakistan.
| | - Muhammad Farooq
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | | | - Abir Boublia
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Département de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria
| | - Umaira Rehman
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan; School of Pharmacy, Multan university of Science and Technology, Multan, Pakistan
| | | | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Barbara Ernst
- Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), ECPM 25 rue Becquerel, F-67000 Strasbourg, France
| | - Malik Albrahim
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Street Omar ibn El-Khattab, 6029, Gabes, Tunisia.
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah 64001, Thi-Qar, Iraq
| | | | - Hira Ijaz
- Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Mang, Khanpur Road, Hari pur 22620, Pakistan
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Ferhat Abbas Setif 1 University, Setif, Algeria.
| |
Collapse
|
4
|
Hameed H, Khan MA, Paiva-Santos AC, Ereej N, Faheem S. Chitin: A versatile biopolymer-based functional therapy for cartilage regeneration. Int J Biol Macromol 2024; 265:131120. [PMID: 38527680 DOI: 10.1016/j.ijbiomac.2024.131120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Chitin is the second most abundant biopolymer and its inherent biological characteristics make it ideal to use for tissue engineering. For many decades, its properties like non-toxicity, abundant availability, ease of modification, biodegradability, biocompatibility, and anti-microbial activity have made chitin an ideal biopolymer for drug delivery. Research studies have also shown many potential benefits of chitin in the formulation of functional therapy for cartilage regeneration. Chitin and its derivatives can be processed into 2D/3D scaffolds, hydrogels, films, exosomes, and nano-fibers, which make it a versatile and functional biopolymer in tissue engineering. Chitin is a biomimetic polymer that provides targeted delivery of mesenchymal stem cells, especially of chondrocytes at the injected donor sites to accelerate regeneration by enhancing cell proliferation and differentiation. Due to this property, chitin is considered an interesting polymer that has a high potential to provide targeted therapy in the regeneration of cartilage. Our paper presents an overview of the method of extraction, structure, properties, and functional role of this versatile biopolymer in tissue engineering, especially cartilage regeneration.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| |
Collapse
|
5
|
Hameed H, Faheem S, Paiva-Santos AC, Sarwar HS, Jamshaid M. A Comprehensive Review of Hydrogel-Based Drug Delivery Systems: Classification, Properties, Recent Trends, and Applications. AAPS PharmSciTech 2024; 25:64. [PMID: 38514495 DOI: 10.1208/s12249-024-02786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
As adaptable biomaterials, hydrogels have shown great promise in several industries, which include the delivery of drugs, engineering of tissues, biosensing, and regenerative medicine. These hydrophilic polymer three-dimensional networks have special qualities like increased content of water, soft, flexible nature, as well as biocompatibility, which makes it excellent candidates for simulating the extracellular matrix and promoting cell development and tissue regeneration. With an emphasis on their design concepts, synthesis processes, and characterization procedures, this review paper offers a thorough overview of hydrogels. It covers the various hydrogel material types, such as natural polymers, synthetic polymers, and hybrid hydrogels, as well as their unique characteristics and uses. The improvements in hydrogel-based platforms for controlled drug delivery are examined. It also looks at recent advances in bioprinting methods that use hydrogels to create intricate tissue constructions with exquisite spatial control. The performance of hydrogels is explored through several variables, including mechanical properties, degradation behaviour, and biological interactions, with a focus on the significance of customizing hydrogel qualities for particular applications. This review paper also offers insights into future directions in hydrogel research, including those that promise to advance the discipline, such as stimuli-responsive hydrogels, self-healing hydrogels, and bioactive hydrogels. Generally, the objective of this review paper is to provide readers with a detailed grasp of hydrogels and all of their potential uses, making it an invaluable tool for scientists and researchers studying biomaterials and tissue engineering.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
6
|
Thirumoorthy G, Balasubramanian B, George JA, Nizam A, Nagella P, Srinatha N, Pappuswamy M, Alanazi AM, Meyyazhagan A, Rengasamy KRR, Veerappa Lakshmaiah V. Phytofabricated bimetallic synthesis of silver-copper nanoparticles using Aerva lanata extract to evaluate their potential cytotoxic and antimicrobial activities. Sci Rep 2024; 14:1270. [PMID: 38218918 PMCID: PMC10787839 DOI: 10.1038/s41598-024-51647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
In this study, we demonstrate the green synthesis of bimetallic silver-copper nanoparticles (Ag-Cu NPs) using Aerva lanata plant extract. These NPs possess diverse biological properties, including in vitro antioxidant, antibiofilm, and cytotoxic activities. The synthesis involves the reduction of silver nitrate and copper oxide salts mediated by the plant extract, resulting in the formation of crystalline Ag-Cu NPs with a face-centered cubic structure. Characterization techniques confirm the presence of functional groups from the plant extract, acting as stabilizing and reducing agents. The synthesized NPs exhibit uniform-sized spherical morphology ranging from 7 to 12 nm. They demonstrate significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, inhibiting extracellular polysaccharide secretion in a dose-dependent manner. The Ag-Cu NPs also exhibit potent cytotoxic activity against cancerous HeLa cell lines, with an inhibitory concentration (IC50) of 17.63 µg mL-1. Additionally, they demonstrate strong antioxidant potential, including reducing capability and H2O2 radical scavenging activity, particularly at high concentrations (240 µg mL-1). Overall, these results emphasize the potential of A. lanata plant metabolite-driven NPs as effective agents against infectious diseases and cancer.
Collapse
Affiliation(s)
- Gopishankar Thirumoorthy
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | | | - Jincy A George
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | - N Srinatha
- Department of Physics, RV Institute of Technology and Management, Bengaluru, 560 076, India
| | - Manikantan Pappuswamy
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | - Amer M Alanazi
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, India.
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| | | |
Collapse
|