1
|
Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, Norouzi R, Rafiei R, Koohpar ZK, Raei B, Zandieh MA, Salimimoghadam S, Entezari M, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Targeting and regulation of autophagy in hepatocellular carcinoma: revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Commun Signal 2023; 21:32. [PMID: 36759819 PMCID: PMC9912665 DOI: 10.1186/s12964-023-01053-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Nadafzadeh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahr-E Kord Branch, Islamic Azad University, Tehran, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Norouzi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reihaneh Rafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Wang H, Zhan M, Liu Q, Wang J. Glycochenodeoxycholate promotes the metastasis of gallbladder cancer cells by inducing epithelial to mesenchymal transition via activation of SOCS3/JAK2/STAT3 signaling pathway. J Cell Physiol 2019; 235:1615-1623. [PMID: 31347168 DOI: 10.1002/jcp.29080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/13/2019] [Indexed: 02/05/2023]
Abstract
The incidence of gallbladder cancer (GBC) is relatively rare but a high degree of malignancy. The migration and invasion potential of GBC severely affects the prognosis of patients with GBC. Glycochenodeoxycholate (GCDC) is one of the most important components in GBC-associated microenvironment. However, the role of GCDC in the metastatic feature of GBC cells is not fully understood. First, the results of this study found that GCDC could effectively enhance the metastasis of GBC cells. Furthermore, GCDC could lead to the enhancement of epithelial to mesenchymal transition (EMT) phenotype in GBC cells, which is concerned to be an important mechanism of tumor metastasis. Further studies showed that GCDC treatment induced the upregulation of matrix metalloproteinase-3 (MMP3), MMP9, and SOCS3/JAK2/p-STAT3 signal pathway in GBC cells, which could regulate the level of EMT. Beside that, we also found the positive expression of farnesoid X receptor (FXR) in GBC cells and inhibition of FXR could significantly block the effect of GCDC on the metastasis of GBC cells. These results indicated that GCDC promoted GBC cells metastasis by enhancing the level of EMT and inhibition of FXR could significantly block the effect of GCDC. On one hand, FXR might be an indicator for predicting the metastasis of patient with GBC. On the other hand, FXR might serve as a potential antimetastasis target in GBC therapy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ming Zhan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
3
|
Glycochenodeoxycholate promotes hepatocellular carcinoma invasion and migration by AMPK/mTOR dependent autophagy activation. Cancer Lett 2019; 454:215-223. [PMID: 30980867 DOI: 10.1016/j.canlet.2019.04.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 01/07/2023]
Abstract
Metastasis and recurrence severely impact the treatment effect of hepatocellular carcinoma (HCC). HCC complicated with cholestasis is more prone to recurrence and metastasis. Previous studies have implicated pathogenesis of HCC by bile acid; however, the underlying mechanism is unknown yet. Glycochenodeoxycholate (GCDC) is one of most important component of bile acid (BA). In the present study, the role of GCDC in HCC cells invasion was detected by in vitro and in vivo assays. GCDC was found to significantly enhance the invasive potential of HCC cells; Further studies showed that GCDC could induce autophagy activation and higher invasive capability in HCC cells. Interestingly, inhibition of autophagy by chloroquine (CQ) reversed this phenomenon. Subsequently, the correlation between TBA expression level and clinicopathological characteristics was analyzed in HCC patients. Clinically, high TBA level in HCC tissue was found to be associated with more invasive and poor survival in HCC patients. Mechanistic study showed that bile acid induced autophagy by targeting the AMPK/mTOR pathway in HCC cells. Therefore, our results suggest that bile acid may promote HCC invasion via activation of autophagy and the level of bile acid may serve as a potential useful indicator for prognosis of HCC patients.
Collapse
|
4
|
Wang K, Brems JJ, Gamelli RL, Holterman AX. iNOS/NO signaling regulates apoptosis induced by glycochenodeoxycholate in hepatocytes. Cell Signal 2011; 23:1677-85. [DOI: 10.1016/j.cellsig.2011.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|
5
|
González R, Cruz A, Ferrín G, López-Cillero P, Fernández-Rodríguez R, Briceño J, Gómez MA, Rufián S, Mata MDL, Martínez-Ruiz A, Marin JJG, Muntané J. Nitric oxide mimics transcriptional and post-translational regulation during α-tocopherol cytoprotection against glycochenodeoxycholate-induced cell death in hepatocytes. J Hepatol 2011; 55:133-44. [PMID: 21145864 DOI: 10.1016/j.jhep.2010.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 10/07/2010] [Accepted: 10/12/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Reactive oxygen species (ROS) and nitric oxide (NO) exert a relevant role during bile acid-induced hepatotoxicity. Whether α-Tocopherol regulates oxidative and nitrosative stress, bile acid transporter expression and their NO-dependent post-translational modifications, and cell death were assessed in vitro and in vivo. METHODS α-Tocopherol and/or NO donors (DETA-NONOate or CSNO, and V-PYRRO/NO) were administered to glycochenodeoxycholic acid (GCDCA)-treated cultured human hepatocytes or to bile duct obstructed rats. Cell injury, superoxide anion (O⁻₂) production, as well as inducible nitric oxide synthase (NOS-2), cytochrome P4507A1 (CYP7A1), heme oxygenase-1, (HO-1) and bile acid transporter expression were determined. Cysteine S-nitrosylation and tyrosine nitration of Na(+)-taurocholate co-transporting polypeptide (NTCP), as well as taurocholic acid (TC) uptake were also evaluated. RESULTS GCDCA-induced cell death was associated with increased (O⁻₂) production, NTCP and HO-1 expression, and with a reduction of CYP7A1 and NOS-2 expression. α-Tocopherol reduced cell death, (O⁻₂) production, CYP7A1, NTCP, and HO-1 expression, as well as increased NOS-2 expression and NO production in GCDCA-treated hepatocytes. α-Tocopherol and NO donors increased NTCP cysteine S-nitrosylation and tyrosine nitration, and reduced TC uptake in hepatocytes. α-Tocopherol and V-PYRRO/NO reduced liver injury and NTCP expression in obstructed rats. CONCLUSIONS The regulation of CYP7A1, NTCP, and HO-1 expression may be relevant for the cytoprotective properties of α-Tocopherol and NO against mitochondrial dysfunction, oxidative stress and cell death in GCDCA-treated hepatocytes. The regulation of NO-dependent post-translational modifications of NTCP by α-Tocopherol and NO donors reduces the uptake of toxic bile acids by hepatocytes.
Collapse
Affiliation(s)
- Raúl González
- Instituto Maimónides para la Investigación Biomédica de Córdoba, Reina Sofia University Hospital, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Hepatic encephalopathy is a serious complication of acute and chronic liver diseases and has a high mortality rate. The pathogenesis of hepatic encephalopathy remains unclear, and there is no means of prevention or effective cure for the disease. Therefore, there is an urgent need for the basic and clinical research of hepatic encephalopathy to elucidate its pathogenesis. The development of animal models is important for elucidating the pathogenesis of hepatic encephalopathy and providing new avenues for diagnosis and therapy of the disease. Among a variety of animal models, rat model is applied most widely for similarity to humans, repeatability, reliability, applicability, controllability, simplicity and economy. In this paper, we briefly review various rat models of hepatic encephalopathy that have different origins.
Collapse
|
7
|
González-Rubio S, Hidalgo AB, Ferrín G, Bello RI, González R, Gahete MD, Ranchal I, Rodríguez BA, Barrera P, Aguilar-Melero P, Linares CI, Castaño JP, Victor VM, De la Mata M, Muntané J. Mitochondrial-driven ubiquinone enhances extracellular calcium-dependent nitric oxide production and reduces glycochenodeoxycholic acid-induced cell death in hepatocytes. Chem Res Toxicol 2010; 22:1984-91. [PMID: 20020783 DOI: 10.1021/tx900327t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ca(2+) mobilization, nitric oxide (NO), and oxidative stress have been involved in cell death induced by hydrophobic bile acid in hepatocytes. The aim of the study was the elucidation of the effect of the antioxidant mitochondrial-driven ubiquinone (Mito Q) on the intracellular Ca(2+) concentration, NO production, and cell death in glycochenodeoxycholic acid (GCDCA)-treated HepG2 cells. The role of the regulation of the intracellular Ca(2+) concentration by Ca(2+) chelators (EGTA or BAPTA-AM), agonist of Ca(2+) entrance (A23187) or NO (L-NAME or NO donor), was assessed during Mito Q cytoprotection in GCDCA-treated HepG2 cells. Cell death, NO synthase (NOS)-1, -2, and -3 expression, Ca(2+) mobilization, and NO production were evaluated. GCDCA reduced the intracellular Ca(2+) concentration and NOS-3 expression and enhanced cell death in HepG2. NO donor prevented and L-NAME enhanced GCDCA-induced cell death. The reduction of Ca(2+) entry by EGTA, but not its release from intracellular stores by BAPTA-AM, reduced the expression of NOS-3 and enhanced cell death in control and GCDCA-treated cells. Mito Q prevented the reduction of intracellular Ca(2+) concentration, NOS-3 expression, NO production, and cell death in GCDCA-treated HepG2 cells. The conclusion is that the recovery of Ca(2+)-dependent NOS-3 expression by Mito Q may be considered an additional cytoprotective property of an antioxidant.
Collapse
|
8
|
Marzioni M, Invernizzi P, Candelaresi C, Maggioni M, Saccomanno S, Selmi C, Rychlicki C, Agostinelli L, Cassani B, Miozzo M, Pasini S, Fava G, Alpini G, Benedetti A. Human cholangiocarcinoma development is associated with dysregulation of opioidergic modulation of cholangiocyte growth. Dig Liver Dis 2009; 41:523-33. [PMID: 18948067 PMCID: PMC2692367 DOI: 10.1016/j.dld.2008.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 08/06/2008] [Accepted: 09/04/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Incidence of cholangiocarcinoma is increasing worldwide, yet remaining highly aggressive and with poor prognosis. The mechanisms that drive cholangiocyte transition towards malignant phenotype are obscure. Cholangiocyte benign proliferation is subjected to a self-limiting mechanism based on the autocrine release of endogenous opioid peptides. Despite the presence of both, ligands interact with delta opioid receptor (OR), but not with microOR, with the consequent inhibition of cell growth. We aimed to verify whether cholangiocarcinoma growth is associated with failure of opioidergic regulation of growth control. METHODS We evaluated the effects of OR selective agonists on cholangiocarcinoma cell proliferation, migration and apoptosis. Intracellular signals were also characterised. RESULTS Activation of microOR, but not deltaOR, increases cholangiocarcinoma cell growth. Such an effect is mediated by ERK1/2, PI3K and Ca(2+)-CamKIIalpha cascades, but not by cAMP/PKA and PKCalpha. microOR activation also enhances cholangiocarcinoma cell migration and reduces death by apoptosis. The anti-apoptotic effect of microOR was PI3K dependent. CONCLUSIONS Our data indicate that cholangiocarcinoma growth is associated with altered opioidergic regulation of cholangiocyte biology, thus opening new scenarios for future surveillance or early diagnostic strategies for cholangiocarcinoma.
Collapse
Affiliation(s)
- M. Marzioni
- Department of Gastroenterology, Politechnic University of Marche, Ancona, Italy,Corresponding author. Tel.: +39 0712206043; fax: +39 0712206044. E-mail address: (M. Marzioni)
| | - P. Invernizzi
- Department of Internal Medicine, Clinic Institute Humanitas IRCCS, University of Milan, Milan, Italy,Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - C. Candelaresi
- Department of Gastroenterology, Politechnic University of Marche, Ancona, Italy
| | - M. Maggioni
- Department of Human Pathology, San Paolo Hospital School of Medicine, University of Milan, Milan, Italy
| | - S Saccomanno
- Department of Gastroenterology, Politechnic University of Marche, Ancona, Italy
| | - C. Selmi
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA,Division of Internal Medicine, Department of Clinical Sciences “Luigi Sacco”, University of Milan, Milan, Italy
| | - C. Rychlicki
- Department of Gastroenterology, Politechnic University of Marche, Ancona, Italy
| | - L. Agostinelli
- Department of Gastroenterology, Politechnic University of Marche, Ancona, Italy
| | - B. Cassani
- Department of Human Pathology, San Paolo Hospital School of Medicine, University of Milan, Milan, Italy
| | - M. Miozzo
- Medical Genetic Unit, San Paolo Hospital School of Medicine, University of Milan, Italy
| | - S. Pasini
- Division of Internal Medicine and Liver Unit, San Paolo Hospital School of Medicine, University of Milan, Milan, Italy
| | - G. Fava
- Department of Gastroenterology, Politechnic University of Marche, Ancona, Italy
| | - G. Alpini
- Division of Research, Central Texas Veterans Health Care System, Scott & White Hospital and The Texas A & M University System Health Science Center College of Medicine, Temple, TX, USA,Department of Medicine, Scott & White Hospital and The Texas A & M University System Health Science Center College of Medicine, Temple, TX, USA,Department of Systems Biology and Translational Medicine, Scott & White Hospital and The Texas A & M University System Health Science Center College of Medicine, Temple, TX, USA
| | - A. Benedetti
- Department of Gastroenterology, Politechnic University of Marche, Ancona, Italy
| |
Collapse
|
9
|
Meng Y, Gong YC, Dou Y, Li W. Changes of serum cytokines and expression of inducible nitric oxide synthase mRNA by Kupffer cells after relief from obstructive jaundice in rats. J Gastroenterol Hepatol 2009; 24:1064-9. [PMID: 19220682 DOI: 10.1111/j.1440-1746.2008.05746.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIMS To investigate the changes of serum endotoxin, tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS) expression by Kupffer cells after relief of obstructive jaundice (OJ) by internal biliary drainage (ID) and external biliary drainage (ED) in rats. MATERIALS AND METHODS Forty eight adult Sprague Dawley rats were randomly assigned to four groups: OJ, ID, ED and sham operation (SH). Inducible nitric oxide synthase mRNA by the Kupffer cells was detected by reverse transcription polymerase chain reaction. The serum TNF-alpha and IL-6 were measured by enzyme linked immunosorbent assay and endotoxin by kinetic turbidimetric limulus tests. RESULTS Serum endotoxin, IL-6 and TNF-alpha levels were significantly elevated in OJ rats compared to that of SH rats (P < 0.01). After relief from OJ, the elevated endotoxin, IL-6 and TNF-alpha levels could be significantly depressed by ID (P < 0.01). However, the serum IL-6 level was increased in ED rats (P < 0.05) and the TNF-alpha level was not depressed by ED. Expression of iNOS mRNA by Kupffer cells was markedly stronger in the OJ group than in the SH group (P = 0.005). After relief from OJ, the iNOS mRNA expression was suppressed by ID (P = 0.139, ID vs OJ). However, the iNOS mRNA expression was promoted by ED (P = 0.321 ED vs OJ; P = 0.016 ED vs SH). CONCLUSIONS The levels of serum endotoxin, TNF-alpha and IL-6 and the expression of iNOS mRNA by Kupffer cells were increased in rats with obstructive jaundice. Internal biliary drainage could entirely reverse the changes, but external drainage only partially did.
Collapse
Affiliation(s)
- Ying Meng
- Department of Gastroenterology and Hepatology, the General Hospital of the Chinese People's Liberation Army, Beijing, China
| | | | | | | |
Collapse
|
10
|
Ijare OB, Bezabeh T, Albiin N, Arnelo U, Bergquist A, Lindberg B, Smith ICP. Absence of glycochenodeoxycholic acid (GCDCA) in human bile is an indication of cholestasis: a 1H MRS study. NMR IN BIOMEDICINE 2009; 22:471-479. [PMID: 19067402 DOI: 10.1002/nbm.1355] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The utility of (1)H MR spectroscopy in detecting chronic cholestasis has been investigated. The amide proton region of the (1)H MR spectrum of human bile plays a major role in differentiating cholestatic (Ch) patterns from the normal ones. Bile obtained from normal bile ducts contains both taurine and glycine conjugates of bile acids--cholic acid (CA), chenodeoxycholic acid (CDCA), and deoxycholic acid (DCA). Absence of a glycine-conjugated bile acid glycochenodeoxycholic acid (GCDCA) has been observed in bile samples obtained from primary sclerosing cholangitis (PSC) patients. A total of 32 patients with various hepatobiliary diseases were included in the study. Twenty-one patients had PSC and 11 had normal cholangiograms. One PSC patient was excluded from the study because of a bad spectrum. Seventeen out of the 20 PSC patients showed an absence of GCDCA in their (1)H MR spectrum of bile. Six of the 11 reference patients with normal cholangiogram also showed spectra similar to those of PSC, indicating the possibility of cholestasis. DQF-COSY and TOCSY experiments performed on bile samples from PSC patients also revealed absence of phosphatidylcholine (PC) in some of the bile samples, suggesting possible damage to the cholangiocytes by the toxic bile. These observations suggest that analysis of human bile by (1)H MRS could be of value in the diagnosis of chronic Ch liver disorders.
Collapse
|
11
|
Vejchapipat P, Poomsawat S, Imvised T, Chongsrisawat V, Chittmittrapap S, Poovorawan Y. Overexpression of hepatic inducible nitric oxide synthase in biliary atresia. Hepatol Res 2008; 38:1018-25. [PMID: 18564140 DOI: 10.1111/j.1872-034x.2008.00385.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIMS Biliary atresia (BA) is a rare and serious liver disease in infants characterized by progressive inflammatory cholangiopathy. The aims of this study were to investigate hepatic expression of inducible nitric oxide synthase (iNOS) in BA and to associate the iNOS expression with their early therapeutic outcome. METHODS Hepatic iNOS expression was determined using immunohistochemistry from liver biopsies of 24 BA patients, and 16 non-BA patients whose liver tissues were needed in the treatment process. Six months after surgery, the BA patients were categorized into two groups;good and poor outcome. The iNOS expression of hepatocyte areas was evaluated based on its intensity using ImageJ software. Unpaired t-tests were used for the comparisons of iNOS expression between groups. RESULTS Hepatic iNOS expression of BA patients was significantly stronger than that of non-BA patients (P < 0.0001). The largest area of hepatic iNOS expression was the area of hepatocytes. Subgroup analysis of BA patients at 6 months post-op revealed that there was no difference in iNOS expression between the patients with good outcome and those with poor outcome (P = 0.732). CONCLUSIONS Overexpression of hepatic iNOS in BA patients was demonstrated. Within liver tissues, hepatocytes were the major source of hepatic iNOS production. However, the expression was not associated with the early therapeutic outcome. These results suggest that iNOS plays a role in the liver pathology of BA but its expression cannot be used as a predictor for therapeutic outcome.
Collapse
Affiliation(s)
- Paisarn Vejchapipat
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
12
|
McFadden D, Souba WW. The Journal of Surgical Research Editorial Board—2007. J Surg Res 2007. [DOI: 10.1016/j.jss.2007.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|