1
|
Vo MC, Nguyen-Pham TN, Lee HJ, Jaya Lakshmi T, Yang S, Jung SH, Kim HJ, Lee JJ. Combination therapy with dendritic cells and lenalidomide is an effective approach to enhance antitumor immunity in a mouse colon cancer model. Oncotarget 2018; 8:27252-27262. [PMID: 28460478 PMCID: PMC5432332 DOI: 10.18632/oncotarget.15917] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
In this study, we investigated efficacy of lenalidomide in combination with tumor antigen-loaded dendritic cells (DCs) in murine colon cancer model. MC-38 cell lines were injected subcutaneously to establish colon cancer-bearing mice. After tumor growth, lenalidomide (50 mg/kg/day) was injected intraperitoneally on 3 consecutive days in combination with tumor antigen-loaded DC vaccination on days 8, 12, 16, and 20. The tumor antigen-loaded DCs plus lenalidomide combination treatment exhibited a significant inhibition of tumor growth compared with the other groups. These effects were associated with a reduction in immune suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, with the induction of immune effector cells, such as natural killer cells, CD4+ T cells and CD8+ T cells in spleen, and with the activation of cytotoxic T lymphocytes and NK cells. This study suggests that a combination of tumor antigen-loaded DC vaccination and lenalidomide synergistically enhanced antitumor immune response in the murine colon cancer model, by inhibiting the generation of immune suppressive cells and recovery of effector cells, and demonstrated superior polarization of Th1/Th2 balance in favor of Th1 immune response. This combination approach with DCs and lenalidomide may provide a new therapeutic option to improve the treatment of colon cancer.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Thanh-Nhan Nguyen-Pham
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyun-Ju Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Seoyun Yang
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|
2
|
Amin M, Lockhart AC. The potential role of immunotherapy to treat colorectal cancer. Expert Opin Investig Drugs 2014; 24:329-44. [PMID: 25519074 DOI: 10.1517/13543784.2015.985376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the fourth most common cancer and the second leading cause of cancer-related death worldwide. Surgery, chemotherapy, radiation therapy and anti-angiogenic therapies form the backbone of treatment for CRC in various stages. Immunotherapy is frequently used either alone or in combination with chemotherapy for the treatment of various cancers such as melanoma, prostate cancer and renal cell cancer. Current CRC research is moving forward to discover ways to incorporate immunotherapies into the treatment of CRC. AREAS COVERED The aim of this review is to summarize the potential role of immunotherapy in CRC. Herein, the authors provide a brief overview of immune modulatory cells, immune surveillance and escape in CRC. They also review vaccine trials in addition to cytokines and monoclonal antibodies. This coverage includes ongoing trials and checkpoint inhibitors such as cytotoxic T lymphocyte antigen-1, programmed cell death-1, and PDL1. EXPERT OPINION Checkpoint inhibitors in combination with either chemotherapy or chemo-antiangiogenic-therapy may represent a future therapeutic approach for CRC incorporating immune system targeting. Given the success of immune-based therapy in other tumor types, the authors anticipate that a similar breakthrough in CRC will be forthcoming.
Collapse
Affiliation(s)
- Manik Amin
- Washington University, Siteman Cancer Center , 660 S. Euclid Ave, Box 8056, St. Louis, MO 63110 , USA
| | | |
Collapse
|
3
|
Schirrmacher V, Fournier P, Schlag P. Autologous tumor cell vaccines for post-operative active-specific immunotherapy of colorectal carcinoma: long-term patient survival and mechanism of function. Expert Rev Vaccines 2014; 13:117-30. [PMID: 24219122 DOI: 10.1586/14760584.2014.854169] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Surgery remains the primary curative treatment but nearly 50% of patients relapse as consequence of micrometastatic or minimal residual disease (MRD) at the time of surgery. Spontaneous T-cell-mediated immune responses to CRC tumor-associated antigens (TAAs) in tumor-draining lymph nodes and in the bone marrow (BM) lead to infiltration of the tumors by lymphocytes. Certain types of such tumor-infiltrating lymphocytes (TILs) have a positive and others a negative impact on the patients' prognosis. This review focuses on advances in CRC active-specific immunotherapy (ASI), in particular on results from randomized controlled clinical studies employing therapeutic autologous tumor cell vaccines. The observed improvement of long-term survival is explained by activation and mobilization of a pre-existing repertoire of tumor-reactive memory T cells which, according to recent discoveries, reside in distinct niches of patients' bone marrow in neighborhood with hematopoietic (HSC) and mesenchymal (MSC) stem cells. Interestingly, memory T cells also contain a subset of stem memory T cells (SMTs) in addition to effector (EMTs) and central memory T cells (CMTs). The mechanism of function of a therapeutic vaccine in a chronic disease is distinct from that of prophylactic vaccines which have to generate de novo protective immune responses. The advantage of autologous vaccines for mobilization of a broad and highly individual repertoire of memory T cells will be discussed.
Collapse
Affiliation(s)
- Volker Schirrmacher
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
4
|
Suriano R, Rajoria S, George AL, Geliebter J, Tiwari RK, Wallack M. Follow-up analysis of a randomized phase III immunotherapeutic clinical trial on melanoma. Mol Clin Oncol 2013; 1:466-472. [PMID: 24649193 DOI: 10.3892/mco.2013.97] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/02/2013] [Indexed: 11/05/2022] Open
Abstract
Development of a melanoma-specific vaccine is of clinical necessity. Therefore, a phase III, randomized, double-blind trial was performed (June 1988-June 1991) to assess the clinical effectiveness of our vaccinia melanoma oncolysate (VMO) vaccine in stage III melanoma patients. Patient data were collected from 11 institutions, as well as from the Social Security Death Index and were analyzed from April through August 2008 for disease-free interval (DFI) and overall survival (OS). The median OS for patients who were administered the VMO vaccine was 7.71 years, compared to 7.95 years for patients administered the vaccinia virus vaccine (V) (p=0.70). The median DFI for the VMO group was six years, while the median DFI for the V group has not yet been reached. This analysis demonstrated a statistically significant difference in OS in females in both groups (VMO, 79%; V, 92%), as compared to males (VMO, 57%; V, 68%) (p=0.0473). This follow-up analysis demonstrated that females had a survival advantage over males, thus warranting further investigation. This significant observation may facilitate the recruitment of patients for future clinical trials, as well as determine which patients are more likely to benefit from receiving the VMO vaccine.
Collapse
Affiliation(s)
- Robert Suriano
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Shilpi Rajoria
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Andrea L George
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Jan Geliebter
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Raj K Tiwari
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Marc Wallack
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595; ; Department of Surgery, Metropolitan Hospital Center GNS, New York, NY 10029, USA
| |
Collapse
|
5
|
Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases. Proc Natl Acad Sci U S A 2013; 110:E1291-300. [PMID: 23509246 DOI: 10.1073/pnas.1220580110] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oncolytic viruses hold promise for the treatment of cancer, but their interaction with the tumor microenvironment needs to be elucidated for optimal tumor cell killing. Because the CXCR4 receptor for the stromal cell-derived factor-1 (SDF-1/CXCL12) chemokine is one of the key stimuli involved in signaling interactions between tumor cells and their stromal microenvironment, we used oncolytic virotherapy with a CXCR4 antagonist to target the CXCL12/CXCR4 signaling axis in a triple-negative 4T1 breast carcinoma in syngeneic mice. We show here that CXCR4 antagonist expression from an oncolytic vaccinia virus delivered intravenously to mice with orthotopic tumors attains higher intratumoral concentration than its soluble counterpart and exhibits increased efficacy over that mediated by oncolysis alone. A systemic delivery of the armed virus after resection of the primary tumor was efficacious in inhibiting the development of spontaneous metastasis and increased overall tumor-free survival. Inhibition of tumor growth with the armed virus was associated with destruction of tumor vasculature, reductions in expression of CXCL12 and VEGF, and decrease in intratumoral numbers of bone marrow-derived endothelial and myeloid cells. These changes led to induction of antitumor antibody responses and resistance to tumor rechallenge. Engineering an oncolytic virus armed with a CXCR4 antagonist represents an innovative strategy that targets multiple elements within the tumor microenvironment. As such, this approach could have a significant therapeutic impact against primary and metastatic breast cancer.
Collapse
|
6
|
Pham TNN, Hong CY, Min JJ, Rhee JH, Nguyen TAT, Park BC, Yang DH, Park YK, Kim HR, Chung IJ, Kim HJ, Lee JJ. Enhancement of antitumor effect using dendritic cells activated with natural killer cells in the presence of Toll-like receptor agonist. Exp Mol Med 2010; 42:407-19. [PMID: 20386085 DOI: 10.3858/emm.2010.42.6.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dendritic cells (DCs) play a role in natural killer (NK) cell activation, while NK cells are also able to activate and mature DCs. Toll-like receptors (TLRs) on the surface of DCs and NK cells induce the maturation and activation of these cells when engaged with their cognate ligand. We investigated to generate potent DCs by maturation with NK cells in the presence of TLR agonist in vitro and tested the efficacy of these DC vaccinations in mouse colon cancer model. The optimal ratios of DCs versus NK cells were 1:1 to 1:2. Immature DCs were mature with NK cells in the presence of lipopolysaccharide, which is TLR4 agonist, and further addition of IL-2 induced phenotypically and functionally mature bone marrow-derived DCs. These potent DCs exhibited not only high expression of several costimulatory molecules and high production of IL-12p40 and IL-12p70, but also high allogeneic T cells stimulatory capacity, and the induction of the high activities to generate tumor-specific CTLs. Consistently, vaccination with these DCs efficiently inhibited CT-26 tumor growth in mouse colon cancer model when compared to other vaccination strategies. Interestingly, combination therapy of these DC-based vaccines and with low-dose cyclophosphamide showed dramatic inhibition effects of tumor growth. These results suggest that the DCs maturated with NK cells in the presence of TLR agonist are potent inducer of antitumor immune responses in mouse model and may provide a new source of DC-based vaccines for the development of immunotherapy against colon cancer.
Collapse
Affiliation(s)
- Thanh Nhan Nguyen Pham
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Jeonnam 519-809, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|