1
|
Yang Y, Pan D, Tang Y, Li J, Zhu K, Yu Z, Zhu L, Wang Y, Chen P, Li C. H3-T6SS of Pseudomonas aeruginosa PA14 contributes to environmental adaptation via secretion of a biofilm-promoting effector. STRESS BIOLOGY 2022; 2:55. [PMID: 37676573 PMCID: PMC10442045 DOI: 10.1007/s44154-022-00078-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/11/2022] [Indexed: 09/08/2023]
Abstract
Microbial species often occur in complex communities and exhibit intricate synergistic and antagonistic interactions. To avoid predation and compete for favorable niches, bacteria have evolved specialized protein secretion systems. The type VI secretion system (T6SS) is a versatile secretion system widely distributed among Gram-negative bacteria that translocates effectors into target cells or the extracellular milieu via various physiological processes. Pseudomonas aeruginosa is an opportunistic pathogen responsible for many diseases, and it has three independent T6SSs (H1-, H2-, and H3-T6SS). In this study, we found that the H3-T6SS of highly virulent P. aeruginosa PA14 is negatively regulated by OxyR and OmpR, which are global regulatory proteins of bacterial oxidative and acid stress. In addition, we identified a H3-T6SS effector PA14_33970, which is located upstream of VgrG3. PA14_33970 interacted directly with VgrG3 and translocated into host cells. Moreover, we found that H3-T6SS and PA14_33970 play crucial roles in oxidative, acid, and osmotic stress resistance, as well as in motility and biofilm formation. PA14_33970 was identified as a new T6SS effector promoting biofilm formation and thus named TepB. Furthermore, we found that TepB contributes to the virulence of P. aeruginosa PA14 toward Caenorhabditis elegans. Overall, our study indicates that H3-T6SS and its biofilm-promoting effector TepB are regulated by OxyR and OmpR, both of which are important for adaptation of P. aeruginosa PA14 to multiple stressors, providing insights into the regulatory mechanisms and roles of T6SSs in P. aeruginosa.
Collapse
Affiliation(s)
- Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Damin Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanan Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiali Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kaixiang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zonglan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Cappelli EA, do Espírito Santo Cucinelli A, Simpson-Louredo L, Canellas MEF, Antunes CA, Burkovski A, da Silva JFR, Mattos-Guaraldi AL, Saliba AM, dos Santos LS. Insights of OxyR role in mechanisms of host-pathogen interaction of Corynebacterium diphtheriae. Braz J Microbiol 2022; 53:583-594. [PMID: 35169995 PMCID: PMC9151940 DOI: 10.1007/s42770-022-00710-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Corynebacterium diphtheriae, the leading causing agent of diphtheria, has been increasingly related to invasive diseases, including sepsis, endocarditis, pneumonia, and osteomyelitis. Oxidative stress defense is required not only for successful growth and survival under environmental conditions but also in the regulation of virulence mechanisms of human pathogenic species, by promoting mucosal colonization, survival, dissemination, and defense against the innate immune system. OxyR, functioning as a negative and/or positive transcriptional regulator, has been included among the major bacterial coordinators of antioxidant response. OxyR was first reported as a repressor of catalase expression in C. diphtheriae. However, the involvement of OxyR in C. diphtheriae pathogenesis remains unclear. Accordingly, this work aimed to investigate the role of OxyR in mechanisms of host-pathogen interaction of C. diphtheriae through the disruption of the OxyR of the diphtheria toxin (DT)-producing C. diphtheriae CDC-E8392 strain. The effects of OxyR gene disruption were analyzed through interaction assays with human epithelial cell lines (HEp-2 and pneumocytes A549) and by the induction of experimental infections in Caenorhabditis elegans nematodes and Swiss Webster mice. The OxyR disruption exerted influence on NO production and mechanism accountable for the expression of the aggregative-adherence pattern (AA) expressed by CDC-E8392 strain on human epithelial HEp-2 cells. Moreover, invasive potential and intracytoplasmic survival within HEp-2 cells, as well as the arthritogenic potential in mice, were found affected by the OxyR disruption. In conclusion, data suggest that OxyR is implicated in mechanisms of host-pathogen interaction of C. diphtheriae.
Collapse
Affiliation(s)
- Elisabete Alves Cappelli
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Andrezza do Espírito Santo Cucinelli
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Liliane Simpson-Louredo
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Maria Eurydice Freire Canellas
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Camila Azevedo Antunes
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil ,grid.5330.50000 0001 2107 3311Microbiology Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Burkovski
- grid.5330.50000 0001 2107 3311Microbiology Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jemima Fuentes Ribeiro da Silva
- grid.412211.50000 0004 4687 5267Department of Histology and Embryology, Roberto Alcantara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Luíza Mattos-Guaraldi
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alessandra Mattos Saliba
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Louisy Sanches dos Santos
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
King M, Kubo A, Kafer L, Braga R, McLeod D, Khanam S, Conway T, Patrauchan MA. Calcium-Regulated Protein CarP Responds to Multiple Host Signals and Mediates Regulation of Pseudomonas aeruginosa Virulence by Calcium. Appl Environ Microbiol 2021; 87:e00061-21. [PMID: 33674436 PMCID: PMC8117776 DOI: 10.1128/aem.00061-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing life-threatening infections. Previously, we showed that elevated calcium (Ca2+) levels increase the production of virulence factors in P. aeruginosa In an effort to characterize the Ca2+ regulatory network, we identified a Ca2+-regulated β-propeller protein, CarP, and showed that expression of the encoding gene is controlled by the Ca2+-regulated two-component system CarSR. Here, by using a Galleria melonella model, we showed that CarP plays a role in regulating P. aeruginosa virulence. By using transcriptome sequencing (RNA-Seq), reverse transcription (RT)-PCR, quantitative RT-PCR (RT-qPCR), and promoter fusions, we determined that carP is transcribed into at least two transcripts and regulated by several bacterial and host factors. The transcription of carP is elevated in response to Ca2+ in P. aeruginosa cystic fibrosis isolates and PAO1 laboratory strain. Elevated Fe2+ also induces carP The simultaneous addition of Ca2+ and Fe2+ increased the carP promoter activity synergistically, which requires the presence of CarR. In silico analysis of the intergenic sequence upstream of carP predicted recognition sites of RhlR/LasR, OxyR, and LexA, suggesting regulation by quorum sensing (QS) and oxidative stress. In agreement, the carP promoter was activated in response to stationary-phase PAO1 supernatant and required the presence of elevated Ca2+ and CarR but remained silent in the triple mutant lacking rhlI, lasI, and pqsA synthases. We also showed that carP transcription is regulated by oxidative stress and that CarP contributes to P. aeruginosa Ca2+-dependent H2O2 tolerance. The multifactorial regulation of carP suggests that CarP plays an important role in P. aeruginosa adaptations to host environments.IMPORTANCEP. aeruginosa is a human pathogen causing life-threatening infections. It is particularly notorious for its ability to adapt to diverse environments within the host. Understanding the signals and the signaling pathways enabling P. aeruginosa adaptation is imperative for developing effective therapies to treat infections caused by this organism. One host signal of particular importance is calcium. Previously, we identified a component of the P. aeruginosa calcium-signaling network, CarP, whose expression is induced by elevated levels of calcium. Here, we show that carP plays an important role in P. aeruginosa virulence and is upregulated in P. aeruginosa strains isolated from sputa of patients with cystic fibrosis. We also identified several bacterial and host factors that regulate the transcription of carP Such multifactorial regulation highlights the interconnectedness between regulatory circuits and, together with the pleotropic effect of CarP on virulence, suggests the importance of this protein in P. aeruginosa adaptations to the host.
Collapse
Affiliation(s)
- Michelle King
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Aya Kubo
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Leah Kafer
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reygan Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Daniel McLeod
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sharmily Khanam
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
4
|
Sen A, Imlay JA. How Microbes Defend Themselves From Incoming Hydrogen Peroxide. Front Immunol 2021; 12:667343. [PMID: 33995399 PMCID: PMC8115020 DOI: 10.3389/fimmu.2021.667343] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 12/02/2022] Open
Abstract
Microbes rely upon iron as a cofactor for many enzymes in their central metabolic processes. The reactive oxygen species (ROS) superoxide and hydrogen peroxide react rapidly with iron, and inside cells they can generate both enzyme and DNA damage. ROS are formed in some bacterial habitats by abiotic processes. The vulnerability of bacteria to ROS is also apparently exploited by ROS-generating host defense systems and bacterial competitors. Phagocyte-derived O 2 - can toxify captured bacteria by damaging unidentified biomolecules on the cell surface; it is unclear whether phagocytic H2O2, which can penetrate into the cell interior, also plays a role in suppressing bacterial invasion. Both pathogenic and free-living microbes activate defensive strategies to defend themselves against incoming H2O2. Most bacteria sense the H2O2via OxyR or PerR transcription factors, whereas yeast uses the Grx3/Yap1 system. In general these regulators induce enzymes that reduce cytoplasmic H2O2 concentrations, decrease the intracellular iron pools, and repair the H2O2-mediated damage. However, individual organisms have tailored these transcription factors and their regulons to suit their particular environmental niches. Some bacteria even contain both OxyR and PerR, raising the question as to why they need both systems. In lab experiments these regulators can also respond to nitric oxide and disulfide stress, although it is unclear whether the responses are physiologically relevant. The next step is to extend these studies to natural environments, so that we can better understand the circumstances in which these systems act. In particular, it is important to probe the role they may play in enabling host infection by microbial pathogens.
Collapse
Affiliation(s)
| | - James A. Imlay
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
5
|
Sun S, Tan LTH, Fang YL, Jin ZJ, Zhou L, Goh BH, Lee LH, Zhou J, He YW. Overexpression of oxyR Increases Phenazine-1-Carboxylic Acid Biosynthesis via Small RNA phrS in the Rhizobacterium Strain Pseudomonas PA1201. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:488-498. [PMID: 31710580 DOI: 10.1094/mpmi-09-19-0264-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenazine-1-carboxylic acid (PCA) is the primary active component in the newly registered, commercial biopesticide Shenqinmycin and is produced during fermentation by the engineered rhizobacterium strain Pseudomonas PA1201. Both phz1 and phz2 gene clusters contribute to PCA biosynthesis. In this study, we evaluated the role of OxyR in the regulation of PCA biosynthesis in PA1201. We first showed a functional link between oxyR expression and PCA biosynthesis. Deletion of oxyR and overexpression of oxyR both increase PCA biosynthesis. The molecular mechanisms underlying OxyR regulation of PCA production were investigated using several approaches. OxyR acts divergently in phz1 and phz2. Overexpression of oxyR activated the expression of phz1 and phz1-dependent PCA production. However, overexpression of oxyR had little effect on phz2-dependent PCA biosynthesis, while deletion of oxyR promoted phz2-dependent PCA production and exerted a negative effect on phz2 expression. Further, OxyR directly bound to the phz2 promoter region. In addition, the regulation of PCA biosynthesis by OxyR was associated with quorum sensing (QS) systems. Overexpression of OxyR positively regulated pqs QS system. Finally, transcriptomic analysis and subsequent genetic analysis revealed the small RNA phrS plays a key role in OxyR-dependent PCA accumulation. Specifically, OxyR directly binds to the phrS promoter region to positively regulate phrS expression wherein PhrS regulates the PCA positive regulator MvfR in order to control PCA biosynthesis.
Collapse
Affiliation(s)
- Shuang Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Yun-Ling Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Jing Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lian Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Souza CF, Baldissera MD, Guarda NS, Bollick YS, Moresco RN, Brusque ICM, Santos RC, Baldisserotto B. Melaleuca alternifolia essential oil nanoparticles ameliorate the hepatic antioxidant/oxidant status of silver catfish experimentally infected with Pseudomonas aeruginosa. Microb Pathog 2017; 108:61-65. [DOI: 10.1016/j.micpath.2017.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022]
|
7
|
Li S, Li Y, Chen G, Zhang J, Xu F, Wu M. Restraining reactive oxygen species in Listeria monocytogenes promotes the apoptosis of glial cells. Redox Rep 2016; 22:190-196. [PMID: 27120397 DOI: 10.1080/13510002.2016.1173327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Listeria monocytogenes is a facultative anaerobic foodborne pathogen that can traverse the blood-brain barrier and cause brain infection. L. monocytogenes infection induces host cell apoptosis in several cell types. In this study, we investigated the apoptosis of human glioma cell line U251 invaded by L. monocytogenes and evaluated the function of bacterial reactive oxygen species (ROS) during infection. METHODS Bacterial ROS level was reduced by carrying out treatment with N-acetyl cysteine (NAC) and diphenyleneiodonium chloride (DPI). After infection, the apoptosis of U251 cells was examined by flow cytometry assay and propidium iodide staining. RESULTS DPI and NAC efficiently decreased ROS level in L. monocytogenes without affecting bacterial growth. Moreover, the apoptosis of glial cells was enhanced upon invasion of DPI- and NAC-pretreated L. monocytogenes. DISCUSSION Results indicate that the apoptosis of glial cells can be induced by L. monocytogenes, and that the inhibition of bacterial ROS increases the apoptosis of host cells.
Collapse
Affiliation(s)
- Sen Li
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093 , China
| | - Yixuan Li
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093 , China
| | - Guowei Chen
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093 , China
| | - Jingchen Zhang
- b Certification and Review Center, Shanghai Municipal Food and Drug, Administration , Shanghai 200020 , China
| | - Fei Xu
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093 , China
| | - Man Wu
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093 , China
| |
Collapse
|
8
|
Riboldi GP, Bierhals CG, de Mattos EP, Frazzon APG, d‘Azevedo PA, Frazzon J. Oxidative stress enhances the expression of sulfur assimilation genes: preliminary insights on the Enterococcus faecalis iron-sulfur cluster machinery regulation. Mem Inst Oswaldo Cruz 2014; 109:408-13. [PMID: 24936909 PMCID: PMC4155840 DOI: 10.1590/0074-0276140006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/27/2014] [Indexed: 11/21/2022] Open
Abstract
The Firmicutes bacteria participate extensively in virulence and pathological processes. Enterococcus faecalis is a commensal microorganism; however, it is also a pathogenic bacterium mainly associated with nosocomial infections in immunocompromised patients. Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups involved in diverse biological processes, whose in vivo formation requires several specific protein machineries. Escherichia coli is one of the most frequently studied microorganisms regarding [Fe-S] cluster biogenesis and encodes the iron-sulfur cluster and sulfur assimilation systems. In Firmicutes species, a unique operon composed of the sufCDSUB genes is responsible for [Fe-S] cluster biogenesis. The aim of this study was to investigate the potential of the E. faecalis sufCDSUB system in the [Fe-S] cluster assembly using oxidative stress and iron depletion as adverse growth conditions. Quantitative real-time polymerase chain reaction demonstrated, for the first time, that Gram-positive bacteria possess an OxyR component responsive to oxidative stress conditions, as fully described for E. coli models. Likewise, strong expression of the sufCDSUB genes was observed in low concentrations of hydrogen peroxide, indicating that the lowest concentration of oxygen free radicals inside cells, known to be highly damaging to [Fe-S] clusters, is sufficient to trigger the transcriptional machinery for prompt replacement of [Fe-S] clusters.
Collapse
Affiliation(s)
- Gustavo Pelicioli Riboldi
- Laboratório de Cocos Gram-positivos e Microbiologia Molecular,
Departamento de Microbiologia, Universidade Federal de Ciências da Saúde de Porto
Alegre, Porto Alegre, RS, Brasil
| | | | | | | | - Pedro Alves d‘Azevedo
- Laboratório de Cocos Gram-positivos e Microbiologia Molecular,
Departamento de Microbiologia, Universidade Federal de Ciências da Saúde de Porto
Alegre, Porto Alegre, RS, Brasil
| | - Jeverson Frazzon
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do
Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
9
|
Reen FJ, Haynes JM, Mooij MJ, O'Gara F. A non-classical LysR-type transcriptional regulator PA2206 is required for an effective oxidative stress response in Pseudomonas aeruginosa. PLoS One 2013; 8:e54479. [PMID: 23382903 PMCID: PMC3557286 DOI: 10.1371/journal.pone.0054479] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/12/2012] [Indexed: 01/13/2023] Open
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as key circuit components in regulating microbial stress responses and are implicated in modulating oxidative stress in the human opportunistic pathogen Pseudomonas aeruginosa. The oxidative stress response encapsulates several strategies to overcome the deleterious effects of reactive oxygen species. However, many of the regulatory components and associated molecular mechanisms underpinning this key adaptive response remain to be characterised. Comparative analysis of publically available transcriptomic datasets led to the identification of a novel LTTR, PA2206, whose expression was altered in response to a range of host signals in addition to oxidative stress. PA2206 was found to be required for tolerance to H2O2in vitro and lethality in vivo in the Zebrafish embryo model of infection. Transcriptomic analysis in the presence of H2O2 showed that PA2206 altered the expression of 58 genes, including a large repertoire of oxidative stress and iron responsive genes, independent of the master regulator of oxidative stress, OxyR. Contrary to the classic mechanism of LysR regulation, PA2206 did not autoregulate its own expression and did not influence expression of adjacent or divergently transcribed genes. The PA2214-15 operon was identified as a direct target of PA2206 with truncated promoter fragments revealing binding to the 5′-ATTGCCTGGGGTTAT-3′ LysR box adjacent to the predicted −35 region. PA2206 also interacted with the pvdS promoter suggesting a global dimension to the PA2206 regulon, and suggests PA2206 is an important regulatory component of P. aeruginosa adaptation during oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Fergal O'Gara
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
10
|
Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Appl Microbiol Biotechnol 2012; 97:1689-97. [PMID: 22948953 DOI: 10.1007/s00253-012-4323-6] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/19/2012] [Accepted: 07/18/2012] [Indexed: 12/20/2022]
Abstract
Alterations of the gut microbiota induced by diet exert a strong influence on the development of metabolic syndrome. In this study, we prove the hypothesis that the long-term high-fat diet (HFD) may influence gut microbiota directly and/or indirectly by changing the redox state. Lipoic acid (LA), as a universal antioxidant, was used to improve the redox state. Reactive oxygen species (ROS), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) were analyzed to profile oxidative stress states. PCR-denaturing gradient gel electrophoresis (DGGE) was used to describe gut flora structures, while plate count was employed for the quantitative analysis of Escherichia coli, lactobacilli, and enterococcus. The influence of redox state on the vitality of gut-derived bacteria was measured in vitro. ROS and MDA, which significantly decreased in LA mice compared with HFD mice, showed a strong positive association with E. coli and enterococcus (P < 0.05) and a negative association with lactobacilli (P < 0.05). Increased T-AOC in LA mice showed a high positive association with lactobacilli (P < 0.05) and a negative correlation with E. coli and enterococcus. These correlations implied that the dietary effects on the gut microbiota were conferred, at least in part, through an effect on oxidative stress. This study provides evidence that modulation of the redox state by an antioxidant has the potential to improve gut microbiota, which has relevance for metabolic health.
Collapse
|
11
|
Abstract
The ability to maintain intracellular concentrations of toxic reactive oxygen species (ROS) within safe limits is essential for all aerobic life forms. In bacteria, as well as other organisms, ROS are produced during the normal course of aerobic metabolism, necessitating the constitutive expression of ROS scavenging systems. However, bacteria can also experience transient high-level exposure to ROS derived either from external sources, such as the host defense response, or as a secondary effect of other seemingly unrelated environmental stresses. Consequently, transcriptional regulators have evolved to sense the levels of ROS and coordinate the appropriate oxidative stress response. Three well-studied examples of these are the peroxide responsive regulators OxyR, PerR, and OhrR. OxyR and PerR are sensors of primarily H(2)O(2), while OhrR senses organic peroxide (ROOH) and sodium hypochlorite (NaOCl). OxyR and OhrR sense oxidants by means of the reversible oxidation of specific cysteine residues. In contrast, PerR senses H(2)O(2) via the Fe-catalyzed oxidation of histidine residues. These transcription regulators also influence complex biological phenomena, such as biofilm formation, the evasion of host immune responses, and antibiotic resistance via the direct regulation of specific proteins.
Collapse
|
12
|
Wei Q, Minh PNL, Dötsch A, Hildebrand F, Panmanee W, Elfarash A, Schulz S, Plaisance S, Charlier D, Hassett D, Häussler S, Cornelis P. Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res 2012; 40:4320-33. [PMID: 22275523 PMCID: PMC3378865 DOI: 10.1093/nar/gks017] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Most bacteria control oxidative stress through the H(2)O(2)-responsive transactivator OxyR, a member of the LTTR family (LysR Type Transcriptional Regulators), which activates the expression of defensive genes such as those encoding catalases, alkyl hydroperoxide reductases and superoxide dismutases. In the human opportunistic pathogen Pseudomonas aeruginosa, OxyR positively regulates expression of the oxidative stress response genes katA, katB, ahpB and ahpCF. To identify additional targets of OxyR in P. aeruginosa PAO1, we performed chromatin immunoprecipitation in combination with whole genome tiling array analyses (ChIP-chip). We detected 56 genes including all the previously identified defensive genes and a battery of novel direct targets of OxyR. Electrophoretic mobility shift assays (EMSAs) for selected newly identified targets indicated that ∼70% of those were bound by purified oxidized OxyR and their regulation was confirmed by quantitative real-time polymerase chain reaction. Furthermore, a thioredoxin system was identified to enzymatically reduce OxyR under oxidative stress. Functional classification analysis showed that OxyR controls a core regulon of oxidative stress defensive genes, and other genes involved in regulation of iron homeostasis (pvdS), quorum-sensing (rsaL), protein synthesis (rpsL) and oxidative phosphorylation (cyoA and snr1). Collectively, our results indicate that OxyR is involved in oxidative stress defense and regulates other aspects of cellular metabolism as well.
Collapse
Affiliation(s)
- Qing Wei
- Department of Bioengineering Sciences, Research group Microbiology, VIB Department of Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Vinckx T, Wei Q, Matthijs S, Noben JP, Daniels R, Cornelis P. A proteome analysis of the response of a Pseudomonas aeruginosa oxyR mutant to iron limitation. Biometals 2011; 24:523-32. [PMID: 21207115 DOI: 10.1007/s10534-010-9403-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/22/2010] [Indexed: 11/30/2022]
Abstract
In Pseudomonas aeruginosa the response to oxidative stress is orchestrated by the LysR regulator OxyR by activation of the transcription of two catalase genes (katA and katB), of the alkyl-hydroxyperoxidases ahpCF and ahpB. Next to the expected high sensitivity to oxidative stress generated by reactive oxygen species (ROS: H(2)O(2), O(2)(-)), the oxyR mutant shows a defective growth under conditions of iron limitation (Vinckx et al. 2008). Although production and uptake of the siderophore pyoverdine is not affected by the absence of oxyR, the mutant is unable to satisfy its need for iron when grown under iron limiting conditions. In order to get a better insight into the effects caused by iron limitation on the physiological response of the oxyR mutant we decided to compare the proteomes of the wild type and the mutant grown in the iron-poor casamino acids medium (CAA), in CAA plus H(2)O(2), and in CAA plus the strong iron chelator ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) (EDDHA). Especially in the presence of hydrogen peroxide the oxyR cells increase the production of stress proteins (Dps and IbpA). The superoxide dismutase SodM is produced in higher amounts in the oxyR mutant grown in CAA plus H(2)O(2). The PchB protein, a isochorismate-pyruvate lyase involved in the siderophore pyochelin biosynthesis is not detectable in the extracts from the oxyR mutant grown in the presence of hydrogen peroxide. When cells were grown in the presence of EDDHA, we observed a reduction of the ferric uptake regulator (Fur), and an increase in the two subunits of the succinyl-CoA synthetase and the fumarase FumC1.
Collapse
Affiliation(s)
- Tiffany Vinckx
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Lan L, Murray TS, Kazmierczak BI, He C. Pseudomonas aeruginosa OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection. Mol Microbiol 2009; 75:76-91. [PMID: 19943895 DOI: 10.1111/j.1365-2958.2009.06955.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress is one of the main challenges bacteria must cope with during infection. Here, we identify a new oxidative stress sensing and response ospR (oxidative stress response and pigment production Regulator) gene in Pseudomonas aeruginosa. Deletion of ospR leads to a significant induction in H(2)O(2) resistance. This effect is mediated by de-repression of PA2826, which lies immediately upstream of ospR and encodes a glutathione peroxidase. Constitutive expression of ospR alters pigment production and beta-lactam resistance in P. aeruginosa via a PA2826-independent manner. We further discovered that OspR regulates additional genes involved in quorum sensing and tyrosine metabolism. These regulatory effects are redox-mediated as addition of H(2)O(2) or cumene hydroperoxide leads to the dissociation of OspR from promoter DNA. A conserved Cys residue, Cys-24, plays the major role of oxidative stress sensing in OspR. The serine substitution mutant of Cys-24 is less susceptible to oxidation in vitro and exhibits altered pigmentation and beta-lactam resistance. Lastly, we show that an ospR null mutant strain displays a greater capacity for dissemination than wild-type MPAO1 strain in a murine model of acute pneumonia. Thus, OspR is a global regulator that senses oxidative stress and regulates multiple pathways to enhance the survival of P. aeruginosa inside host.
Collapse
Affiliation(s)
- Lefu Lan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
15
|
Vinckx T, Matthijs S, Cornelis P. Loss of the oxidative stress regulator OxyR in Pseudomonas aeruginosa PAO1 impairs growth under iron-limited conditions. FEMS Microbiol Lett 2009; 288:258-65. [PMID: 19054085 DOI: 10.1111/j.1574-6968.2008.01360.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pyoverdine is the main siderophore secreted by fluorescent pseudomonads to scavenge iron in the extracellular environment. Iron uptake, however, needs to be tightly regulated, because free iron stimulates the formation of highly toxic oxygen derivatives. In the opportunistic pathogen Pseudomonas aeruginosa, the transcriptional regulator OxyR plays a key role in the upregulation of defense mechanisms against oxidative stress as it stimulates the expression of the antioxidant genes katB, ahpB and ahpCF after contact with oxidative stress-generating agents. Inactivation of the oxyR gene in Pseudomonas fluorescens ATCC 17400 and in P. aeruginosa PAO1 impairs pyoverdine-mediated iron uptake. The pyoverdine utilization defect can be restored by complementation with the oxyR gene of P. aeruginosa, as well as by adding catalase. Growth of the oxyR mutant in low- or high-iron media is also impaired at a low, but not at a high inoculum density. Uptake of radioactive (59)Fe pyoverdine is, however, not affected by the oxyR mutation, nor is the transcription of the fpvA gene encoding the ferripyoverdine receptor, suggesting that the defect lies in the inability to remove iron from the ferrisiderophore.
Collapse
Affiliation(s)
- Tiffany Vinckx
- VIB, Department of Molecular and Cellular Interactions, Laboratory of Microbial Interactions, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | |
Collapse
|