1
|
Ren J, Yu H, Li W, Jin X, Yan B. Downregulation of CBX7 induced by EZH2 upregulates FGFR3 expression to reduce sensitivity to cisplatin in bladder cancer. Br J Cancer 2023; 128:232-244. [PMID: 36396821 PMCID: PMC9902481 DOI: 10.1038/s41416-022-02058-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cisplatin-based cytotoxic chemotherapy is considered to be the first-line therapy for advanced bladder cancer (BC), but resistance to cisplatin limits its antitumor effect. Fibroblast growth factor receptor 3 (FGFR3) has been reported to contribute to the progression and cisplatin resistance of BC. Meanwhile, chromobox protein homologue 7 (CBX7) was reported to inhibit BC progression. And our previous RNA-seq data on CBX7 (GSE185630) suggested that CBX7 might repress FGFR3, but the underlying mechanism and other cancer-related functions of CBX7 are still unknown. METHODS Silico analysis of RNA-seq data to identify the upstream regulators and downstream target genes of CBX7. The western blot analysis, quantitative real-time PCR (RT-qPCR), chromatin immunoprecipitation (ChIP)-qPCR analysis, CCK-8 assay, and nude mice xenograft models were used to confirm the enhancer of zeste homologue (EZH2)/CBX7/ FGFR3 axis. RESULTS In this study, we first showed that CBX7 is downregulated in BC. Then, we revealed that EZH2 represses CBX7 expression by increasing H3K27me3 in BC cells. Moreover, we demonstrated that CBX7 directly downregulates FGFR3 expression and sensitises BC cells to cisplatin treatment by inactivating the phosphatidylinositol 3-kinase (PI3K)-(RAC-alpha serine/threonine-protein kinase) AKT signalling pathway. CONCLUSIONS These results suggest that CBX7 is an ideal candidate to overcome cisplatin resistance in BC.
Collapse
Affiliation(s)
- Jiannan Ren
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China
| | - Haixin Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China.
| | - Bin Yan
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
2
|
Marangoni E, Laurent C, Coussy F, El-Botty R, Château-Joubert S, Servely JL, de Plater L, Assayag F, Dahmani A, Montaudon E, Nemati F, Fleury J, Vacher S, Gentien D, Rapinat A, Foidart P, Sounni NE, Noel A, Vincent-Salomon A, Lae M, Decaudin D, Roman-Roman S, Bièche I, Piccart M, Reyal F. Capecitabine Efficacy Is Correlated with TYMP and RB1 Expression in PDX Established from Triple-Negative Breast Cancers. Clin Cancer Res 2018; 24:2605-2615. [PMID: 29463559 DOI: 10.1158/1078-0432.ccr-17-3490] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/25/2018] [Accepted: 02/14/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Triple-negative breast cancer (TNBC) patients with residual disease after neoadjuvant chemotherapy have a poor outcome. We developed patient-derived xenografts (PDX) from residual tumors to identify efficient chemotherapies and predictive biomarkers in a context of resistance to anthracyclines- and taxanes-based treatments.Experimental Design: PDX were established from residual tumors of primary breast cancer patients treated in neoadjuvant setting. TNBC PDX were treated by anthracyclines, taxanes, platins, and capecitabine. Predictive biomarkers were identified by transcriptomic and immunohistologic analysis. Downregulation of RB1 was performed by siRNA in a cell line established from a PDX.Results: Residual TNBC PDX were characterized by a high tumor take, a short latency, and a poor prognosis of the corresponding patients. With the exception of BRCA1/2-mutated models, residual PDX were resistant to anthracyclines, taxanes, and platins. Capecitabine, the oral prodrug of 5-FU, was highly efficient in 60% of PDX, with two models showing complete responses. Prior treatment of a responder PDX with 5-FU increased expression of thymidylate synthase and decreased efficacy of capecitabine. Transcriptomic and IHC analyses of 32 TNBC PDX, including both residual tumors and treatment-naïve derived tumors, identified RB1 and TYMP proteins as predictive biomarkers for capecitabine response. Finally, RB1 knockdown in a cell line established from a capecitabine-responder PDX decreased sensitivity to 5-FU treatment.Conclusions: We identified capecitabine as efficient chemotherapy in TNBC PDX models established from residual disease and resistant to anthracyclines, taxanes, and platins. RB1 positivity and high expression of TYMP were significantly associated with capecitabine response. Clin Cancer Res; 24(11); 2605-15. ©2018 AACR.
Collapse
Affiliation(s)
- Elisabetta Marangoni
- Translational Research Department, Institut Curie, PSL Research University, Paris, France.
| | - Cécile Laurent
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Florence Coussy
- Translational Research Department, Institut Curie, PSL Research University, Paris, France.,Medical Oncology Department, Institut Curie, PSL Research University, Paris, France.,Genetics Department, Institut Curie, PSL Research University, Paris, France
| | - Rania El-Botty
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | | | - Jean-Luc Servely
- BioPôle Alfort, Ecole Nationale Vétérinaire d'Alfort, Maisons Alfort, France.,INRA, PHASE Department, Paris, France
| | - Ludmilla de Plater
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Franck Assayag
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Ahmed Dahmani
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Elodie Montaudon
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Fariba Nemati
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Justine Fleury
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Sophie Vacher
- Genetics Department, Institut Curie, PSL Research University, Paris, France
| | - David Gentien
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Audrey Rapinat
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Pierre Foidart
- Laboratory of Tumor and Developmental Biology, Groupe Interdisciplinaire de Génoprotéomique Appliqué-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
| | - Nor Eddine Sounni
- Laboratory of Tumor and Developmental Biology, Groupe Interdisciplinaire de Génoprotéomique Appliqué-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Developmental Biology, Groupe Interdisciplinaire de Génoprotéomique Appliqué-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
| | | | - Marick Lae
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - Didier Decaudin
- Translational Research Department, Institut Curie, PSL Research University, Paris, France.,Medical Oncology Department, Institut Curie, PSL Research University, Paris, France
| | - Sergio Roman-Roman
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Ivan Bièche
- Genetics Department, Institut Curie, PSL Research University, Paris, France
| | - Martine Piccart
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabien Reyal
- Translational Research Department, Institut Curie, PSL Research University, Paris, France.,Surgery Department, Institut Curie, PSL Research University, Paris, France.,Translational Research Department, INSERM, U932, Immunity and Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, Paris, France
| |
Collapse
|
3
|
Fujishima H, Fumoto S, Shibata T, Nishiki K, Tsukamoto Y, Etoh T, Moriyama M, Shiraishi N, Inomata M. A 17-molecule set as a predictor of complete response to neoadjuvant chemotherapy with docetaxel, cisplatin, and 5-fluorouracil in esophageal cancer. PLoS One 2017; 12:e0188098. [PMID: 29136005 PMCID: PMC5685591 DOI: 10.1371/journal.pone.0188098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Background Recently, neoadjuvant chemotherapy with docetaxel/cisplatin/5-fluorouracil (NAC-DCF) was identified as a novel strong regimen with a high rate of pathological complete response (pCR) in advanced esophageal cancer in Japan. Predicting pCR will contribute to the therapeutic strategy and the prevention of surgical invasion. However, a predictor of pCR after NAC-DCF has not yet been developed. The aim of this study was to identify a novel predictor of pCR in locally advanced esophageal cancer treated with NAC-DCF. Patients and methods A total of 32 patients who received NAC-DCF followed by esophagectomy between June 2013 and March 2016 were enrolled in this study. We divided the patients into the following 2 groups: pCR group (9 cases) and non-pCR group (23 cases), and compared gene expressions between these groups using DNA microarray data and KeyMolnet. Subsequently, a validation study of candidate molecular expression was performed in 7 additional cases. Results Seventeen molecules, including transcription factor E2F, T-cell-specific transcription factor, Src (known as “proto-oncogene tyrosine-protein kinase of sarcoma”), interferon regulatory factor 1, thymidylate synthase, cyclin B, cyclin-dependent kinase (CDK) 4, CDK, caspase-1, vitamin D receptor, histone deacetylase, MAPK/ERK kinase, bcl-2-associated X protein, runt-related transcription factor 1, PR domain zinc finger protein 1, platelet-derived growth factor receptor, and interleukin 1, were identified as candidate molecules. The molecules were mainly associated with pathways, such as transcriptional regulation by SMAD, RB/E2F, and STAT. The validation study indicated that 12 of the 17 molecules (71%) matched the trends of molecular expression. Conclusions A 17-molecule set that predicts pCR after NAC-DCF for locally advanced esophageal cancer was identified.
Collapse
Affiliation(s)
- Hajime Fujishima
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Oita, Japan
- * E-mail:
| | - Shoichi Fumoto
- Department of Surgery, Oita Nakamura Hospital, Yufu, Oita, Japan
| | - Tomotaka Shibata
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Kohei Nishiki
- Department of Surgery, Oita Nakamura Hospital, Yufu, Oita, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Tsuyoshi Etoh
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Norio Shiraishi
- Comprehensive Surgery for Community Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Oita, Japan
| |
Collapse
|
4
|
Lin CJ, Chang YA, Lin YL, Liu SH, Chang CK, Chen RM. Preclinical effects of honokiol on treating glioblastoma multiforme via G1 phase arrest and cell apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:517-527. [PMID: 27064011 DOI: 10.1016/j.phymed.2016.02.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Our previous study showed that honokiol, a bioactive polyphenol, can traverse the blood-brain barrier and kills neuroblastoma cells. PURPOSE In this study, we further evaluated the preclinical effects of honokiol on development of malignant glioma and the possible mechanisms. METHODS Effects of honokiol on viability, caspase activities, apoptosis, and cell cycle arrest in human glioma U87 MG or U373MG cells were assayed. As to the mechanisms, levels of inactive or phosphorylated (p) p53, p21, CDK6, CDK4, cyclin D1, and E2F1 were immunodetected. Pifithrin-α (PFN-α), a p53 inhibitor, was pretreated into the cells. Finally, our in vitro findings were confirmed using intracranial nude mice implanted with U87 MG cells. RESULTS Exposure of human U87 MG glioma cells to honokiol decreased the cell viability. In parallel, honokiol induced activations of caspase-8, -9, and -3, apoptosis, and G1 cell cycle arrest. Treatment of U87 MG cells with honokiol increased p53 phosphorylation and p21 levels. Honokiol provoked signal-transducing downregulation of CDK6, CDK4, cyclin D1, phosphorylated (p)RB, and E2F1. Pretreatment of U87 MG cells with PFN-α significantly reversed honokiol-induced p53 phosphorylation and p21 augmentation. Honokiol-induced alterations in levels of CDK6, CDK4, cyclin D1, p-RB, and E2F1 were attenuated by PFN-α. Furthermore, honokiol could induce apoptotic insults to human U373MG glioma cells. In our in vivo model, administration of honokiol prolonged the survival rate of nude mice implanted with U87 MG cells and induced caspase-3 activation and chronological changes in p53, p21, CDK6, CDK4, cyclin D1, p-RB, and E2F1. CONCLUSIONS Honokiol can repress human glioma growth by inducing apoptosis and cell cycle arrest in tumor cells though activating a p53/cyclin D1/CDK6/CDK4/E2F1-dependent pathway. Our results suggest the potential of honokiol in therapies for human malignant gliomas.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Comprehensive Cancer Center and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ya-An Chang
- Comprehensive Cancer Center and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ling Lin
- Brain Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Kuei Chang
- Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan
| | - Ruei-Ming Chen
- Comprehensive Cancer Center and Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Brain Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan; Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Zaharieva MM, Kirilov M, Chai M, Berger SM, Konstantinov S, Berger MR. Reduced expression of the retinoblastoma protein shows that the related signaling pathway is essential for mediating the antineoplastic activity of erufosine. PLoS One 2014; 9:e100950. [PMID: 24987858 PMCID: PMC4079453 DOI: 10.1371/journal.pone.0100950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023] Open
Abstract
Erufosine is a new antineoplastic agent of the group of alkylphosphocholines, which interferes with signal transduction and induces apoptosis in various leukemic and tumor cell lines. The present study was designed to examine for the first time the mechanism of resistance to erufosine in malignant cells with permanently reduced expression of the retinoblastoma (Rb) protein. Bearing in mind the high number of malignancies with reduced level of this tumor-suppressor, this investigation was deemed important for using erufosine, alone or in combination, in patients with compromised RB1 gene expression. For this purpose, clones of the leukemic T-cell line SKW-3 were used, which had been engineered to constantly express differently low Rb levels. The alkylphosphocholine induced apoptosis, stimulated the expression of the cyclin dependent kinase inhibitor p27Kip1 and inhibited the synthesis of cyclin D3, thereby causing a G2 phase cell cycle arrest and death of cells with wild type Rb expression. In contrast, Rb-deficiency impeded the changes induced by eru-fosine in the expression of these proteins and abrogated the induction of G2 arrest, which was correlated with reduced antiproliferative and anticlonogenic activities of the compound. In conclusion, analysis of our results showed for the first time that the Rb signaling pathway is essential for mediating the antineoplastic activity of erufosine and its efficacy in patients with malignant diseases may be predicted by determining the Rb status.
Collapse
Affiliation(s)
- Maya M. Zaharieva
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| | - Milen Kirilov
- Department of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Minquang Chai
- Department of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Stefan M. Berger
- Department of Molecular Biology, Central Institute of Mental Health, Mannheim, Germany
| | - Spiro Konstantinov
- Laboratory for Molecular Pharmacology and Experimental Chemotherapy, Department for Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Martin R. Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
6
|
Bandi N, Vassella E. miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol Cancer 2011; 10:55. [PMID: 21575235 PMCID: PMC3120797 DOI: 10.1186/1476-4598-10-55] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 05/16/2011] [Indexed: 12/18/2022] Open
Abstract
Background microRNAs (miRNAs) are small non-coding RNAs that are frequently involved in carcinogenesis. Although many miRNAs form part of integrated networks, little information is available how they interact with each other to control cellular processes. miR-34a and miR-15a/16 are functionally related; they share common targets and control similar processes including G1-S cell cycle progression and apoptosis. The aim of this study was to investigate the combined action of miR-34a and miR-15a/16 in non-small cell lung cancer (NSCLC) cells. Methods NSCLC cells were transfected with miR-34a and miR-15a/16 mimics and analysed for cell cycle arrest and apoptosis by flow cytometry. Expression of retinoblastoma and cyclin E1 was manipulated to investigate the role of these proteins in miRNA-induced cell cycle arrest. Expression of miRNA targets was assessed by real-time PCR. To investigate if both miRNAs are co-regulated in NSCLC cells, tumour tissue and matched normal lung tissue from 23 patients were collected by laser capture microdissection and compared for the expression of these miRNAs by real-time PCR. Results In the present study, we demonstrate that miR-34a and miR-15a/16 act synergistically to induce cell cycle arrest in a Rb-dependent manner. In contrast, no synergistic effect of these miRNAs was observed for apoptosis. The synergistic action on cell cycle arrest was not due to a more efficient down-regulation of targets common to both miRNAs. However, the synergistic effect was abrogated in cells in which cyclin E1, a target unique to miR-15a/16, was silenced by RNA interference. Thus, the synergistic effect was due to the fact that in concerted action both miRNAs are able to down-regulate more targets involved in cell cycle control than each miRNA alone. Both miRNAs were significantly co-regulated in adenocarcinomas of the lung suggesting a functional link between these miRNAs. Conclusions In concerted action miRNAs are able to potentiate their impact on G1-S progression. Thus the combination of miRNAs of the same network rather than individual miRNAs should be considered for assessing a biological response. Since miR-34a and miR-15a/16 are frequently down-regulated in the same tumour tissue, administrating a combination of both miRNAs may also potentiate their therapeutic impact.
Collapse
Affiliation(s)
- Nora Bandi
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
7
|
Stewart DJ. Tumor and host factors that may limit efficacy of chemotherapy in non-small cell and small cell lung cancer. Crit Rev Oncol Hematol 2010; 75:173-234. [PMID: 20047843 PMCID: PMC2888634 DOI: 10.1016/j.critrevonc.2009.11.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/19/2009] [Accepted: 11/27/2009] [Indexed: 12/19/2022] Open
Abstract
While chemotherapy provides useful palliation, advanced lung cancer remains incurable since those tumors that are initially sensitive to therapy rapidly develop acquired resistance. Resistance may arise from impaired drug delivery, extracellular factors, decreased drug uptake into tumor cells, increased drug efflux, drug inactivation by detoxifying factors, decreased drug activation or binding to target, altered target, increased damage repair, tolerance of damage, decreased proapoptotic factors, increased antiapoptotic factors, or altered cell cycling or transcription factors. Factors for which there is now substantial clinical evidence of a link to small cell lung cancer (SCLC) resistance to chemotherapy include MRP (for platinum-based combination chemotherapy) and MDR1/P-gp (for non-platinum agents). SPECT MIBI and Tc-TF scanning appears to predict chemotherapy benefit in SCLC. In non-small cell lung cancer (NSCLC), the strongest clinical evidence is for taxane resistance with elevated expression or mutation of class III beta-tubulin (and possibly alpha tubulin), platinum resistance and expression of ERCC1 or BCRP, gemcitabine resistance and RRM1 expression, and resistance to several agents and COX-2 expression (although COX-2 inhibitors have had minimal impact on drug efficacy clinically). Tumors expressing high BRCA1 may have increased resistance to platinums but increased sensitivity to taxanes. Limited early clinical data suggest that chemotherapy resistance in NSCLC may also be increased with decreased expression of cyclin B1 or of Eg5, or with increased expression of ICAM, matrilysin, osteopontin, DDH, survivin, PCDGF, caveolin-1, p21WAF1/CIP1, or 14-3-3sigma, and that IGF-1R inhibitors may increase efficacy of chemotherapy, particularly in squamous cell carcinomas. Equivocal data (with some positive studies but other negative studies) suggest that NSCLC tumors with some EGFR mutations may have increased sensitivity to chemotherapy, while K-ras mutations and expression of GST-pi, RB or p27kip1 may possibly confer resistance. While limited clinical data suggest that p53 mutations are associated with resistance to platinum-based therapies in NSCLC, data on p53 IHC positivity are equivocal. To date, resistance-modulating strategies have generally not proven clinically useful in lung cancer, although small randomized trials suggest a modest benefit of verapamil and related agents in NSCLC.
Collapse
Affiliation(s)
- David J Stewart
- Department of Thoracic/Head & Neck Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Thymidylate synthase inhibition induces p53-dependent and p53-independent apoptotic responses in human urinary bladder cancer cells. J Cancer Res Clin Oncol 2010; 137:359-74. [PMID: 20425122 DOI: 10.1007/s00432-010-0891-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 04/12/2010] [Indexed: 01/08/2023]
Abstract
PURPOSE In search for more effective clinical protocols, the antimetabolite drug 5-fluorouracil (5-FU) has been successfully included in new regimens of bladder cancer combination chemotherapy. In the present study, we have investigated the effects of 5-FU treatment on apoptosis induction in wild-type and mutant p53 urinary bladder cancer cells. METHODS We have used MTT-based assays, FACS analysis, Western blotting and semi-quantitative RT-PCR in RT4 and RT112 (grade I, wild-type p53), as well as in T24 (grade III, mutant p53) and TCCSUP (grade IV, mutant p53) human urinary bladder cancer cell lines. RESULTS In the urothelial bladder cancer cell lines RT4 and T24, 5-FU-induced TS inhibition proved to be associated with cell type-dependent (a) sensitivity to the drug, (b) Caspase-mediated apoptosis, (c) p53 stabilization and activation, as well as Rb phosphorylation and E2F1 expression and (d) transcriptional regulation of p53 target genes and their cognate proteins, while an E2F-dependent transcriptional network did not seem to be critically engaged in such type of responses. CONCLUSIONS We have shown that in the wild-type p53 context of RT4 cells, 5-FU-triggered apoptosis was prominently efficient and mainly regulated by p53-dependent mechanisms, whereas the mutant p53 environment of T24 cells was able to provide notable levels of resistance to apoptosis, basically ascribed to E2F-independent, and still unidentified, pathways. Nevertheless, the differential vulnerability of RT4 and T24 cells to 5-FU administration could also be associated with cell-type-specific transcriptional expression patterns of certain genes critically involved in 5-FU metabolism.
Collapse
|
9
|
Stewart DJ. Lung Cancer Resistance to Chemotherapy. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Guo XR, Cheng B, Zheng YC, Lin ST, Li PY. Effects of down-regulation of p21 by HBx gene on HepG2 cell proliferation and apoptosis. Shijie Huaren Xiaohua Zazhi 2008; 16:2080-2085. [DOI: 10.11569/wcjd.v16.i19.2080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish gene-transfected cell strain HepG2/HBx and study the effect of HBx on cell cycle, proliferation and apoptosis of HepG2 cells as well as the potential regulative role of p21.
METHODS: HBx was transfected into HepG2 cells and G418 selection was used to obtain the positive clones of HepG2/HBx cells. Then HBx mRNA expression and protein expression were detected using RT-PCR and western blot analysis respectively. MTT assay and flow cytometry were adopted to measure the proliferation, cell cycle and apoptosis of HepG2/HBx, HepG2 and HepG2/pcDNA3.1 (HepG2 cells transfected with pcDNA3.1) cells. Semi-quantified RT-PCR was used to evaluate the expression of p21 and p53 in three groups.
RESULTS: The expression of mRNA and protein of HBx in HepG2/HBx cells was confirmed by RT-PCR and western blot respectively. The proliferation of HepG2/HBx cells was accelerated. The proportion of HepG2/HBx cells decreased significantly in G0/G1 phase (43.34% ± 3.11% vs 57.69 ± 4.28%, P < 0.01), but increased remarkably in S phase (28.69% ± 1.17% vs 22.41% ± 1.99%, P < 0.05) and the apoptosis rate of HepG2/HBx cells was at a significantly lower level (1.19% ± 0.06% vs 5.43% ± 0.42%, P < 0.001). Compared with HepG2 and HepG2/pcDNA3.1 cells, the expression of p21 mRNA in HepG2/HBx was down-regulated (0.16 ± 0.05 vs 0.78 ± 0.15, P < 0.001), while there was no significant difference in the expression of p53 gene.
CONCLUSION: The HBx gene down-regulates the expression of p21 mRNA, which may play an important role in accelerating cell cycle, improving growth and inhibiting apoptosis of HepG2 cells.
Collapse
|