1
|
Zomer HD, Cooke PS. Targeting estrogen signaling and biosynthesis for aged skin repair. Front Physiol 2023; 14:1281071. [PMID: 38028803 PMCID: PMC10645088 DOI: 10.3389/fphys.2023.1281071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Non-healing skin wounds are disproportionally prevalent in older adults. Current treatments do not account for the particularities of aged skin and result in inadequate outcomes. Overall, healing chronic wounds in the elderly remains a major unmet clinical need. Estrogens play a critical role in reproduction but also have important actions in non-reproductive organs. Estrogen biosynthesis and signaling pathways are locally activated during physiological wound healing, processes that are inhibited in elderly estrogen-deprived skin. Estrogen deprivation has been shown to be a critical mediator of impaired wound healing in both postmenopausal women and aged men, and topical estrogen application reverses age-associated delayed wound healing in both elderly men and women. These data indicate that adequate estrogen biosynthesis and properly regulated estrogen signaling pathways are essential for normal wound healing and can be targeted to optimize tissue repair in the elderly. However, due to fundamental questions regarding how to safely restore estrogen signaling locally in skin wounds, there are currently no therapeutic strategies addressing estrogen deficiency in elderly chronic wounds. This review discusses established and recent literature in this area and proposes the hypothesis that estrogen plays a pleiotropic role in skin aging and that targeting estrogen signaling and biosynthesis could promote skin repair in older adults.
Collapse
Affiliation(s)
- Helena D. Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
2
|
Peržeľová V, Sabol F, Vasilenko T, Novotný M, Kováč I, Slezák M, Ďurkáč J, Hollý M, Pilátová M, Szabo P, Varinská L, Čriepoková Z, Kučera T, Kaltner H, André S, Gabius HJ, Mučaji P, Smetana K, Gál P. Pharmacological activation of estrogen receptors-α and -β differentially modulates keratinocyte differentiation with functional impact on wound healing. Int J Mol Med 2015; 37:21-8. [PMID: 26397183 PMCID: PMC4687436 DOI: 10.3892/ijmm.2015.2351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/12/2015] [Indexed: 11/05/2022] Open
Abstract
Estrogen deprivation is considered responsible for many age-related processes, including poor wound healing. Guided by previous observations that estradiol accelerates re‑epithelialization through estrogen receptor (ER)‑β, in the present study, we examined whether selective ER agonists [4,4',4''-(4-propyl [1H] pyrazole-1,3,5-triyl)‑trisphenol (PPT), ER‑α agonist; 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), ER‑β agonist] affect the expression of basic proliferation and differentiation markers (Ki‑67, keratin‑10, ‑14 and ‑19, galectin‑1 and Sox‑2) of keratinocytes using HaCaT cells. In parallel, ovariectomized rats were treated daily with an ER modulator, and wound tissue was removed 21 days after wounding and routinely processed for basic histological analysis. Our results revealed that the HaCaT keratinocytes expressed both ER‑α and ‑β, and thus are well-suited for studying the effects of ER agonists on epidermal regeneration. The activation of ER‑α produced a protein expression pattern similar to that observed in the control culture, with a moderate expression of Ki‑67 being observed. However, the activation of ER‑β led to an increase in cell proliferation and keratin‑19 expression, as well as a decrease in galectin‑1 expression. Fittingly, in rat wounds treated with the ER‑β agonist (DPN), epidermal regeneration was accelerated. In the present study, we provide information on the mechanisms through which estrogens affect the expression patterns of selected markers, thus modulating keratinocyte proliferation and differentiation; in addition, we demonstrate that the pharmacological activation of ER-α and -β has a direct impact on wound healing.
Collapse
Affiliation(s)
- Vlasta Peržeľová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - František Sabol
- Department of Heart Surgery, East‑Slovak Institute of Cardiovascular Diseases and Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Tomáš Vasilenko
- Department of Surgery, Košice‑Šaca Hospital and Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Martin Novotný
- Department for Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| | - Ivan Kováč
- Department for Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| | - Martin Slezák
- Department for Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| | - Ján Ďurkáč
- Department for Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| | - Martin Hollý
- Department for Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| | - Martina Pilátová
- Department of Pathological Anatomy and Physiology, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Pavol Szabo
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Varinská
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Zuzana Čriepoková
- Department of Pathological Anatomy and Physiology, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig‑Maximilians‑University Munich, Munich, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig‑Maximilians‑University Munich, Munich, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig‑Maximilians‑University Munich, Munich, Germany
| | - Pavel Mučaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Peter Gál
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| |
Collapse
|
3
|
GÁL P, VASILENKO T, KOVÁČ I, KOSTELNÍKOVÁ M, JAKUBČO J, SZABO P, DVOŘÁNKOVÁ B, SABOL F, GABIUS HJ, SMETANA Jr. K. Atropa Belladonna L. Water Extract: Modulator of Extracellular Matrix Formation in Vitro and in Vivo. Physiol Res 2012; 61:241-50. [DOI: 10.33549/physiolres.932223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Previously, we found that treatment of cutaneous wounds with Atropa belladonna L. (AB) revealed shortened process of acute inflammation as well as increased tensile strength and collagen deposition in healing skin wounds (Gál et al. 2009). To better understand AB effect on skin wound healing male Sprague-Dawley rats were submitted to one round full thickness skin wound on the back. In two experimental groups two different concentrations of AB extract were daily applied whereas the control group remained untreated. For histological evaluation samples were removed on day 21 after surgery and stained for wide spectrum cytokeratin, collagen III, fibronectin, galectin-1, and vimentin. In addition, in the in vitro study different concentration of AB extract were used to evaluate differences in HaCaT keratinocytes proliferation and differentiation by detection of Ki67 and keratin-19 expressions. Furthermore, to assess ECM formation of human dermal fibroblasts on the in vitro level fibronectin and galectin-1 were visualized. Our study showed that AB induces fibronectin and galectin-1 rich ECM formation in vitro and in vivo. In addition, the proliferation of keratinocytes was also increased. In conclusion, AB is an effective modulator of skin wound healing. Nevertheless, further research is needed to find optimal therapeutic concentration and exact underlying mechanism of action.
Collapse
Affiliation(s)
- P. GÁL
- Department for Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Novotný M, Vasilenko T, Varinská L, Smetana K, Szabo P, Šarišský M, Dvořánková B, Mojžiš J, Bobrov N, Toporcerová S, Sabol F, Matthews BJ, Gál P. ER-α agonist induces conversion of fibroblasts into myofibroblasts, while ER-β agonist increases ECM production and wound tensile strength of healing skin wounds in ovariectomised rats. Exp Dermatol 2011; 20:703-8. [DOI: 10.1111/j.1600-0625.2011.01284.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Emmerson E, Hardman MJ. The role of estrogen deficiency in skin ageing and wound healing. Biogerontology 2011; 13:3-20. [PMID: 21369728 DOI: 10.1007/s10522-011-9322-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 02/11/2011] [Indexed: 12/12/2022]
Abstract
The links between hormonal signalling and lifespan have been well documented in a range of model organisms. For example, in C. elegans or D. melanogaster, lifespan can be modulated by ablating germline cells, or manipulating reproductive history or pregnenolone signalling. In mammalian systems, however, hormonal contribution to longevity is less well understood. With increasing age human steroid hormone profiles change substantially, particularly following menopause in women. This article reviews recent links between steroid sex hormones and ageing, with special emphasis on the skin and wound repair. Estrogen, which substantially decreases with advancing age in both males and females, protects against multiple aspects of cellular ageing in rodent models, including oxidative damage, telomere shortening and cellular senescence. Estrogen's effects are particularly pronounced in the skin where cutaneous changes post-menopause are well documented, and can be partially reversed by classical Hormone Replacement Therapy (HRT). Our research shows that while chronological ageing has clear effects on skin wound healing, falling estrogen levels are the principle mediator of these effects. Thus, both HRT and topical estrogen replacement substantially accelerate healing in elderly humans, but are associated with unwanted deleterious effects, particularly cancer promotion. In fact, much current research effort is being invested in exploring the therapeutic potential of estrogen signalling manipulation to reverse age-associated pathology in peripheral tissues. In the case of the skin the differential targeting of estrogen receptors to promote healing in aged subjects is a real therapeutic possibility.
Collapse
Affiliation(s)
- Elaine Emmerson
- The University of Manchester, A V Hill Building, Manchester, UK
| | | |
Collapse
|