1
|
Qi M, Su X, Li Z, Huang H, Wang J, Lin N, Kong X. Bibliometric analysis of research progress on tetramethylpyrazine and its effects on ischemia-reperfusion injury. Pharmacol Ther 2024; 259:108656. [PMID: 38735486 DOI: 10.1016/j.pharmthera.2024.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
In recent decades, natural products have attracted worldwide attention and become one of the most important resources for pharmacological industries and medical sciences to identify novel drug candidates for disease treatment. Tetramethylpyrazine (TMP) is an alkaloid extracted from Ligusticum chuanxiong Hort., which has shown great therapeutic potential in cardiovascular and cerebrovascular diseases, liver and renal injury, as well as cancer. In this review, we analyzed 1270 papers published on the Web of Science Core Collection from 2002 to 2022 and found that TMP exerted significant protective effects on ischemia-reperfusion (I/R) injury that is the cause of pathological damages in a variety of conditions, such as ischemic stroke, myocardial infarction, acute kidney injury, and liver transplantation. TMP is limited in clinical applications to some extent due to its rapid metabolism, a short biological half-life and poor bioavailability. Obviously, the structural modification, administration methods and dosage forms of TMP need to be further investigated in order to improve its bioavailability. This review summarizes the clinical applications of TMP, elucidates its potential mechanisms in protecting I/R injury, provides strategies to improve bioavailability, which presents a comprehensive understanding of the important compound. Hopefully, the information and knowledge from this review can help researchers and physicians to better improve the applications of TMP in the clinic.
Collapse
Affiliation(s)
- Mingzhu Qi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhuohang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Helan Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingbo Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Lee J, Islam M, Yoo Y, Kim S, Kim R, Jang Y, Lee S, Hwang H, Shin H, Hwang J, Kim K, Park B, Ahn D, Lee Y, Kim T, Kim I, Yoon J, Tae H. Changes of antioxidant enzymes in the kidney after cardiac arrest in the rat model. Braz J Med Biol Res 2023; 56:e12408. [PMID: 36790289 PMCID: PMC9925192 DOI: 10.1590/1414-431x2023e12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/03/2023] [Indexed: 02/12/2023] Open
Abstract
Globally, cardiac arrest (CA) is a leading cause of death and disability. Asphyxial CA (ACA)-induced kidney damage is a crucial factor in reducing the survival rate. The purpose of this study was to investigate the role of antioxidant enzymes in histopathological renal damage in an ACA rat model at different time points. A total of 88 rats were divided into five groups and exposed to ACA except for the sham group. To evaluate glomerular function and oxidative stress, serum levels of blood urea nitrogen (BUN) and creatinine (Crtn) and malondialdehyde (MDA) levels in renal tissues were measured. To determine histopathological damage, hematoxylin and eosin staining, periodic acid-Schiff staining, and Masson's trichrome staining were performed. Expression levels of antioxidant enzymes including superoxide dismutase-1 (SOD-1), superoxide dismutase-2 (SOD-2), catalase (CAT), and glutathione peroxidase (GPx) were measured by immunohistochemistry (IHC). Survival rate of the experimental rats was reduced to 80% at 6 h, 55% at 12 h, 42.9% at 1 day, and 33% at 2 days after return of spontaneous circulation. Levels of BUN, Crtn, and MDA started to increase significantly in the early period of CA induction. Renal histopathological damage increased markedly from 6 h until two days post-CA. Additionally, expression levels of antioxidant enzymes were significantly decreased at 6 h, 12 h, 1 day, and 2 days after CA. CA-induced oxidative stress and decreased levels of antioxidant enzymes (SOD-1, SOD-2, CAT, GPx) from 6 h to two days could be possible mediators of severe renal tissue damage and increased mortality rate.
Collapse
Affiliation(s)
- J.H. Lee
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - M.S. Islam
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - Y.J. Yoo
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - S.E. Kim
- Department of Emergency Medicine, Research Institute of Clinical Medicine, Jeonbuk National University and Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - R.H. Kim
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - Y.J. Jang
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - S.H. Lee
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - H.P. Hwang
- Department of Surgery, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - H.Y. Shin
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, Jeonbuk, Korea
| | - J.H. Hwang
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, Jeonbuk, Korea
| | - K. Kim
- Department of Thoracic and Cardiovascular Surgery, Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - B.Y. Park
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - D. Ahn
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - Y. Lee
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - T. Kim
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - I.S. Kim
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| | - J.C. Yoon
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - H.J. Tae
- Department of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do, Korea
| |
Collapse
|
3
|
Ahmad A. Prophylactic Treatment with Hydrogen Sulphide Can Prevent Renal Ischemia-Reperfusion Injury in L-NAME Induced Hypertensive Rats with Cisplatin-Induced Acute Renal Failure. Life (Basel) 2022; 12:1819. [PMID: 36362975 PMCID: PMC9695289 DOI: 10.3390/life12111819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 08/26/2023] Open
Abstract
(Background and Objectives): Renal ischemia perfusion injury is one of the major issues in kidney transplant. The aim of the study was to investigate the hypothesis that prophylactic treatment-with a hydrogen sulphide donor to an acute renal failure case of hypertensive rats-can minimize the ischemia reperfusion injury of the kidney which is beneficial for kidney transplant. To check this hypothesis, the present study was designed to investigate the effect of chronic administration of a hydrogen sulphide (H2S) donor and sodium hydrosulfide (NaHS) on nuclear factor kappa B (NF-kB) and inter cellular adhesion molecule-1 (ICAM-1) concentration in non-renal failure (NRF) and acute renal failure (ARF) rats in the ischemia-reperfusion injury (IRI) model of the kidney in both normotensive WKY and hypertensive rats (L-nitro arginine methyl ester (L-NAME-induced); (Materials and Methods): A total number of 48 Sprague-Dawley rats were recruited into eight groups each consisting of six animals. Each of these eight groups was used to measure systemic and renal parameters, H2S, antioxidant parameters in plasma, plasma concentration of NF-kB and ICAM-1 and renal cortical blood pressure. ARF was induced by single intraperitoneal (i.p.) cisplatin injection (5 mg/kg). Hypertension was induced by oral administration of L-NAME in drinking water for four weeks at 40 mg/kg/day. NaHS was administered (i.p) at 56 µmol/kg for five weeks while dL-propargylglycine (PAG), a H2S generation inhibitor, was administered as a single intra-peritoneal injection (50 mg/kg). An acute surgical experiment was performed for the induction of renal ischemia for 30 min by renal artery clamping followed by reperfusion for three hours; (Results): Chronic administration of NaHS attenuated the severity of ARF in both normotensive and hypertensive animals (L-NAME) along with lowering the blood pressure in hypertensive groups. NaHS improved the oxidative stress parameters such as total superoxide dismutase (T-SOD), glutathione (GSH) and reduced the malondialdehyde (MDA) concentration along with reduction of NF-kB and ICAM-1 following renal IRI; Conclusions: These findings demonstrate that H2S not only reduced the severity of cisplatin induced ARF but also reduced the severity of renal IRI by upregulating antioxidants along with decreased concentrations of NF-kB and ICAM-1 in normotensive and L-NAME induced hypertensive rats.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| |
Collapse
|
4
|
Li J, Gong X. Tetramethylpyrazine: An Active Ingredient of Chinese Herbal Medicine With Therapeutic Potential in Acute Kidney Injury and Renal Fibrosis. Front Pharmacol 2022; 13:820071. [PMID: 35145414 PMCID: PMC8821904 DOI: 10.3389/fphar.2022.820071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 12/23/2022] Open
Abstract
As an increasing public health concern worldwide, acute kidney injury (AKI) is characterized by rapid deterioration of kidney function. Although continuous renal replacement therapy (CRRT) could be used to treat severe AKI, effective drug treatment methods for AKI are largely lacking. Tetramethylpyrazine (TMP) is an active ingredient of Chinese herb Ligusticum wallichii (Chuan Xiong) with antioxidant and anti-inflammatory functions. In recent years, more and more clinical and experimental studies suggest that TMP might effectively prevent AKI. The present article reviews the potential mechanisms of TMP against AKI. Through search and review, a total of 23 studies were finally included. Our results indicate that the undergoing mechanisms of TMP preventing AKI are mainly related to reducing oxidative stress injury, inhibiting inflammation, preventing apoptosis of intrinsic renal cells, and regulating autophagy. Meanwhile, given that AKI and chronic kidney disease (CKD) are very tightly linked by each other, and AKI is also an important inducement of CKD, we thus summarized the potential of TMP impeding the progression of CKD through anti-renal fibrosis.
Collapse
|
5
|
Zhu YL, Huang J, Chen XY, Xie J, Yang Q, Wang JF, Deng XM. Senkyunolide I alleviates renal Ischemia-Reperfusion injury by inhibiting oxidative stress, endoplasmic reticulum stress and apoptosis. Int Immunopharmacol 2021; 102:108393. [PMID: 34857480 DOI: 10.1016/j.intimp.2021.108393] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ligusticum striatum DC. is traditionally used to treat ischemic diseases because of its potent effect against blood stasis and thrombosis, including various cardiovascular, cerebral and renal diseases. Senkyunolide I (SEI), which is the major active phthalide ingredient of Ligusticum striatum DC., is mainly distributed in kidney and has been shown to attenuate ischemia reperfusion injury in liver. However, the underlying effect of SEI against renal ischemia-reperfusion injury (IRI) remain unclear. METHODS Renal ischemia reperfusion mice model was established by clamping bilateral renal pedicles. In vitro oxidative stress model was induced by H2O2. Level of blood urea nitrogen (BUN) and serum creatinine (SCr) was tested for in vivo model evaluation, while cell viability was tested using CCK8 to evaluate in vitro model. SEI solution containing 1% DMSO was injected intraperitoneally in the I/R group, while normal saline containing 1% DMSO injected in the Sham group. Reduced glutathione (GSH) solution containing 1% DMSO was used as a positive control. RESULTS SEI protected renal function and structural integrity. It reversed the I/R-induced elevation of BUN, SCr levels and renal pathological injury. The secretion of proinflammatory cytokines including TNF-α and IL-6 was inhibited, and the renal apoptosis was attenuated by SEI. In addition, SEI played a protective role by reducing the production of reactive oxidative species (ROS), as shown by the elevated expression of antioxidant proteins including Nrf2, HO-1, NQO1, and reduced expression of endoplasmic reticulum stress (ERS) related proteins including GRP78 and CHOP. It also attenuated HK2 cell injury in an in vitro model induced by H2O2. CONCLUSIONS SEI alleviates renal injury induced by ischemia reperfusion with anti-inflammatory, anti-endoplasmic reticulum stress, anti-oxidative and anti-apoptotic effect.
Collapse
Affiliation(s)
- Ya-Lin Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Huang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xue-Ying Chen
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jian Xie
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qing Yang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jia-Feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Xiao-Ming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
6
|
Natural products: potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol Sin 2021; 42:1951-1969. [PMID: 33750909 PMCID: PMC8633358 DOI: 10.1038/s41401-021-00620-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is a clinically advanced and highly effective anticancer drug used in the treatment of a wide variety of malignancies, such as head and neck, lung, testis, ovary, breast cancer, etc. However, it has only a limited use in clinical practice due to its severe adverse effects, particularly nephrotoxicity; 20%–35% of patients develop acute kidney injury (AKI) after cisplatin administration. The nephrotoxic effect of cisplatin is cumulative and dose dependent and often necessitates dose reduction or withdrawal. Recurrent episodes of AKI result in impaired renal tubular function and acute renal failure, chronic kidney disease, uremia, and hypertensive nephropathy. The pathophysiology of cisplatin-induced AKI involves proximal tubular injury, apoptosis, oxidative stress, inflammation, and vascular injury in the kidneys. At present, there are no effective drugs or methods for cisplatin-induced kidney injury. Recent in vitro and in vivo studies show that numerous natural products (flavonoids, saponins, alkaloids, polysaccharide, phenylpropanoids, etc.) have specific antioxidant, anti-inflammatory, and anti-apoptotic properties that regulate the pathways associated with cisplatin-induced kidney damage. In this review we describe the molecular mechanisms of cisplatin-induced nephrotoxicity and summarize recent findings in the field of natural products that undermine these mechanisms to protect against cisplatin-induced kidney damage and provide potential strategies for AKI treatment.
Collapse
|
7
|
Lu PH, Yu MC, Wei MJ, Kuo KL. The Therapeutic Strategies for Uremic Toxins Control in Chronic Kidney Disease. Toxins (Basel) 2021; 13:573. [PMID: 34437444 PMCID: PMC8402511 DOI: 10.3390/toxins13080573] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Uremic toxins (UTs) are mainly produced by protein metabolized by the intestinal microbiota and converted in the liver or by mitochondria or other enzymes. The accumulation of UTs can damage the intestinal barrier integrity and cause vascular damage and progressive kidney damage. Together, these factors lead to metabolic imbalances, which in turn increase oxidative stress and inflammation and then produce uremia that affects many organs and causes diseases including renal fibrosis, vascular disease, and renal osteodystrophy. This article is based on the theory of the intestinal-renal axis, from bench to bedside, and it discusses nonextracorporeal therapies for UTs, which are classified into three categories: medication, diet and supplement therapy, and complementary and alternative medicine (CAM) and other therapies. The effects of medications such as AST-120 and meclofenamate are described. Diet and supplement therapies include plant-based diet, very low-protein diet, probiotics, prebiotics, synbiotics, and nutraceuticals. The research status of Chinese herbal medicine is discussed for CAM and other therapies. This review can provide some treatment recommendations for the reduction of UTs in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Ping-Hsun Lu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (P.-H.L.); (M.-C.Y.); (M.-J.W.)
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97048, Taiwan
| | - Min-Chien Yu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (P.-H.L.); (M.-C.Y.); (M.-J.W.)
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97048, Taiwan
| | - Meng-Jiun Wei
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (P.-H.L.); (M.-C.Y.); (M.-J.W.)
| | - Ko-Lin Kuo
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 97048, Taiwan
| |
Collapse
|
8
|
Jawad A, Yoo YJ, Yoon JC, Tian W, Islam MS, Lee EY, Shin HY, Kim SE, Ahn D, Park BY, Tae HJ, Kim IS. Changes of renal histopathology and the role of Nrf2/HO-1 in asphyxial cardiac arrest model in rats. Acta Cir Bras 2021; 36:e360607. [PMID: 34287609 PMCID: PMC8291904 DOI: 10.1590/acb360607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/12/2021] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To investigate the role of Nrf2/HO-1 in renal histopathological ailments time-dependently in asphyxial cardiac arrest (CA) rat model. METHODS Eighty-eight Sprague Dawley male rats were divided into five groups of eight rats each. Asphyxial CA was induced in all the experimental rats except for the sham group. The rats were sacrificed at 6 hours, 12 hours, one day and two days post-CA. Serum blood urea nitrogen (BUN), creatinine (Crtn) and malondialdehyde from the renal tissues were evaluated. Hematoxylin and eosin and periodic acid-Schiff staining were done to evaluate the renal histopathological changes in the renal cortex. Furthermore, Nrf2/HO-1 immunohistochemistry (ihc) and western blot analysis were performed after CA. RESULTS The survival rate of rats decreased in a time-dependent manner: 66.6% at 6 hours, 50% at 12 hours, 38.1% in one day, and 25.8% in two days. BUN and serum Crtn markedly increased in CA-operated groups. Histopathological ailments of the renal cortical tissues increased significantly from 6 hours until two days post-CA. Furthermore, Nrf2/HO-1 expression level significantly increased at 6 hours, 12 hours, and one day. CONCLUSIONS The survival rate decreased time-dependently, and Nrf/HO-1 expression increased from 6 hours with the peak times at 12 hours, and one day post-CA.
Collapse
Affiliation(s)
- Ali Jawad
- Jeonbuk National University, South Korea
| | | | | | | | | | | | | | - So Eun Kim
- Jeonbuk National University Hospital, South Korea
| | | | | | | | | |
Collapse
|
9
|
Jawad A, Yoo YJ, Cho JH, Yoon JC, Tian W, Islam MS, Lee EY, Shin HY, Kim SE, Kim K, Ahn D, Park BY, Kim IS, Lee JH, Tae HJ. Therapeutic hypothermia effect on asphyxial cardiac arrest-induced renal ischemia/reperfusion injury via change of Nrf2/HO-1 levels. Exp Ther Med 2021; 22:1031. [PMID: 34373717 PMCID: PMC8343472 DOI: 10.3892/etm.2021.10463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to investigate the renoprotective effect of therapeutic hypothermia (TH) on renal ischemia-reperfusion injury (RI/RI) induced by asphyxial cardiac arrest (CA) in rats. A total of 48 male rats were randomly divided into five groups: i) Sham (n=6); ii) Normothermia + CA (Normo.) (n=14); iii) Normo. and 2 h of TH after return of spontaneous circulation (ROSC) (n=12); iv) Normo. and 4 h of TH after ROSC (n=9); and v) Normo. and 6 h of TH after ROSC (n=7). All rats except the Sham group underwent asphyxia CA and were sacrificed 1 day after ROSC. The survival rate increased from 42.8% in the Normo. group to 50, 66.6 and 85.7% in the groups with 2, 4 and 6 h of TH after CA, respectively. TH attenuated the histopathological changes of the renal tissues following ROSC and the levels of blood urea nitrogen, serum creatinine and malondialdehyde in renal tissues. On immunohistochemistry, the relative optical density of nuclear erythroid-related factor-2 (Nrf2) and heme oxygenase (HO-1) expression in renal tissues increased in the Normo. group compared with that in the Sham group and exhibited further significant increases at 6 h of TH after ROSC. In conclusion, TH attenuated renal injury and increased the expression of Nrf2 and HO-1 in a TH treatment time-dependent manner.
Collapse
Affiliation(s)
- Ali Jawad
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Yeo-Jin Yoo
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Jeong-Hwi Cho
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Jae Chol Yoon
- Department of Emergency Medicine, Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Weishun Tian
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Mohammad Sadikul Islam
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Eui-Yong Lee
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Ha-Young Shin
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - So Eun Kim
- Department of Emergency Medicine, Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Kyunghwa Kim
- Department of Thoracic and Cardiovascular Surgery, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Dongchoon Ahn
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Byung-Yong Park
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - In-Shik Kim
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| | - Jun Ho Lee
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Hyun-Jin Tae
- Department of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Jeollabuk-do 54696, Republic of Korea
| |
Collapse
|
10
|
Zhang L, Lu X, Gong L, Cui L, Zhang H, Zhao W, Jiang P, Hou G, Hou Y. Tetramethylpyrazine Protects Blood-Spinal Cord Barrier Integrity by Modulating Microglia Polarization Through Activation of STAT3/SOCS3 and Inhibition of NF-кB Signaling Pathways in Experimental Autoimmune Encephalomyelitis Mice. Cell Mol Neurobiol 2021; 41:717-731. [PMID: 32424774 DOI: 10.1007/s10571-020-00878-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/12/2020] [Indexed: 01/24/2023]
Abstract
We previously reported that tetramethylpyrazine (TMP) alleviates experimental autoimmune encephalomyelitis (EAE) by decreasing glia activation. Activated microglia has been shown to mediate blood-spinal cord barrier (BSCB) disruption, which is a primary and continuous pathological characteristic of multiple sclerosis (MS). Therefore, in this study, we further investigated whether TMP protects the BSCB integrity by inhibition of glia activation to alleviate EAE. Extravasation of evans blue was used to detect the BSCB disruption. Tumor necrosis factor-α (TNF-α)/interlukine-1β (IL-1β) and interlukine-4 (IL-4)/interlukine-10 (IL-10) were determined by enzyme-linked immunosorbent assay. BV2 glial cells stimulated by interferon-γ (IFN-γ) were co-cultured with human brain microvascular endothelial cells to investigate the effect of TMP on the BSCB disruption. Flow cytometry was used to analyze the microglia phenotype. Western blot was performed to reveal the signaling pathways involved in the microglia activation. In this study, most importantly, we found that TMP protects the BSCB integrity by modulating microglia polarization from M1 phenotype to M2 phenotype through activation of STAT3/SOCS3 and inhibition of NF-кB signaling pathways. Moreover, TMP significantly preserves the tight junction proteins, reduces the secretion of pro-inflammatory cytokines (TNF-α, IL-1β) and increases the secretion of anti-inflammatory cytokines (IL-4, IL-10) from IFN-γ-stimulated BV2 microglia cells. Consequently, protection of the BSCB integrity leads to alleviation of clinical symptoms and demyelination in EAE mice. Therefore, TMP might be an effective therapeutic agent for cerebral disorders with BBB or BSCB disruption, such as ischemic stroke, MS, and traumatic brain injury.
Collapse
Affiliation(s)
- Lianshuang Zhang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Xueyan Lu
- Department of Histology and Embryology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Lihua Gong
- Department of Histology and Embryology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Linlu Cui
- Department of Histology and Embryology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Hongqin Zhang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Wei Zhao
- Department of Histology and Embryology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Pengyu Jiang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - GuiGe Hou
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Yun Hou
- Department of Histology and Embryology, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| |
Collapse
|
11
|
Alghamdi MA, Hussein AM, Al-Eitan LN, Elnashar E, Elgendy A, Abdalla AM, Ahmed S, Khalil WA. Possible mechanisms for the renoprotective effects of date palm fruits and seeds extracts against renal ischemia/reperfusion injury in rats. Biomed Pharmacother 2020; 130:110540. [PMID: 32763814 DOI: 10.1016/j.biopha.2020.110540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE This work investigates the possible renoprotective effects of date palm fruits and seeds extract against renal ischemia and their underlying mechanisms. METHODS 108-Sprague Dawle male rats were randomly allocated into 6 equal groups differently receiving aqueous or methanolic fruit and seed extracts. Assay of serum creatinine, BUN and TNF-α, morphological examination of the left kidney, markers of the redox state (MDA, CAT, and GSH), the expression of TNFα and Nrf2 genes at the level of mRNA, the expression of caspase-3 and TGF-β proteins by immunohistochemistry were performed. RESULTS 45-min renal I/R caused significant deterioration of kidney functions (increase in serum creatinine and BUN) and morphology (P < 0.001) and significant reduction in CAT activity and GSH levels with significant increase in serum TNF-α and MDA concentration and the expression of Nrf2, caspase-3, TNF-α, and TGF-β in kidney tissues. Pre-treatment with either date palm fruit or seed extracts significantly improved kidney functions and morphology (P ≤ 0.001) with a significant increase in the expression of Nrf2 and CAT activity, and GSH concentration and a reduction in serum TNF-α and expression of caspase-3, TNF-α, and TGF-β (P < 0.001). CONCLUSIONS Administration of date palm extracts exhibited a renoprotective effect against renal I/R injury.This renoprotective action might be due to their antioxidants, anti-apoptotic and anti-inflammatory actions. Moreover, aqueous fruit extracts offered powerful renoprotective effect than aqueous seed extracts, and aqueous fruit and seed extracts were generally more effective than methanolic extracts.
Collapse
Affiliation(s)
- Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Laith N Al-Eitan
- Department of Applied Biological Science, Jordan University of Science and Technology, Irbid 22110, Jordan; Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Eman Elnashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Ahmed Elgendy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Asim M Abdalla
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Seham Ahmed
- Department of Organic Chemistry, Faculty of Science, Zagazig University, Zagazig 35621, Egypt
| | - Wael A Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
12
|
Sun W, Li A, Wang Z, Sun X, Dong M, Qi F, Wang L, Zhang Y, Du P. Tetramethylpyrazine alleviates acute kidney injury by inhibiting NLRP3/HIF‑1α and apoptosis. Mol Med Rep 2020; 22:2655-2664. [PMID: 32945382 PMCID: PMC7453617 DOI: 10.3892/mmr.2020.11378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the protective effect and underlying mechanism of tetramethylpyrazine (TMP) on renal ischemia reperfusion injury (RIRI) in rats, which refers to the injury caused by the restoration of blood supply and reperfusion of the kidney after a period of ischemia. Sprague‑Dawley rats were randomly divided into a Sham group, renal ischemia‑reperfusion (I/R) group and TMP group. TMP hydrochloride (40 mg/kg, 6 h intervals) was given via intraperitoneal injection immediately after reperfusion in the TMP group, after 24 h the kidney tissues were taken for follow‑up experiments. Pathological changes in the kidney tissues were observed by periodic acid‑Schiff staining. Renal function was assessed by measuring levels of serum creatinine and blood urea nitrogen, and inflammatory cytokines tumor necrosis factor (TNF)‑α and interleukin (IL)‑6. Renal cell apoptosis was detected by TUNEL‑DAPI double staining, mRNA and protein changes were analyzed by reverse transcription‑quantitative PCR and western blotting. Cell viability was measured using a CCK‑8 assay. It was found that the renal tissues of the sham operation group were notably abnormal, and the renal tissues of the I/R group were damaged, while the renal tissues of the TMP group were less damaged compared with those of the I/R group. Compared with the I/R group, the serum creatinine and blood urea nitrogen levels in the TMP group were low (all P<0.05), levels of inflammatory cytokines TNF‑α and IL‑6 decreased, the apoptotic rate was low (all P<0.05), and the relative expression levels of nucleotide‑oligomerization domain‑like receptor 3 (NLRP3) protein and mRNA in renal tissues were low (all P<0.05). The expression levels of hypoxia‑inducible factor 1‑α and NLRP3 increased after oxygen and glucose deprivation (OGD), and reduced after treatment with OGD and TMP (all P<0.05). It was concluded that TMP can reduce renal injury and improve renal function in RIRI rats, and its mechanism may be related to the reduction of NLRP3 expression in renal tissues.
Collapse
Affiliation(s)
- Wangnan Sun
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Aiqun Li
- Emergency Department, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhiqiang Wang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xuhong Sun
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Menghua Dong
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Fu Qi
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Lin Wang
- Department of Geriatrics, the Second Hospital of Shandong University, Jinan, Shandong 264001, P.R. China
| | - Yueheng Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Pengchao Du
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
13
|
Nasrallah H, Aissa I, Slim C, Boujbiha MA, Zaouali MA, Bejaoui M, Wilke V, Ben Jannet H, Mosbah H, Ben Abdennebi H. Effect of oleuropein on oxidative stress, inflammation and apoptosis induced by ischemia-reperfusion injury in rat kidney. Life Sci 2020; 255:117833. [PMID: 32450167 DOI: 10.1016/j.lfs.2020.117833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
AIMS This study aimed to evaluate the effect of oleuropein (OLE), the main phenolic compound present in olive leaves, on kidney ischemia-reperfusion injury (IRI) and to explore the underlying protective mechanism. MAIN METHODS Rat kidneys were subjected to 60 min of bilateral warm ischemia followed by 120 min of reperfusion. OLE was administered orally 48 h, 24 h and 30 min prior to ischemia at doses of 10, 50 and 100 mg/kg body weight. The creatinine, urea, uric acid concentrations and lactate dehydrogenase (LDH) activity in plasma were evaluated. Oxidative stress and inflammation parameters were also assessed. Renal expression of AMP-activated protein kinase (p-AMPK), endothelial nitric oxide synthase (eNOS), mitogen-activated protein kinases (MAPK), inflammatory proteins and apoptotic proteins were evaluated using Western blot. KEY FINDINGS Our results showed that OLE at 50 mg/kg reduced kidney IRI as revealed by a significant decrease of plasmatic creatinine, urea, uric acid concentrations and LDH activity. In parallel, OLE up-regulated antioxidant capacities. Moreover, OLE diminished the level of CRP and the expression of cyclooxygenase 2 (COX-2). Finally, OLE enhanced AMPK phosphorylation as well as eNOS expression whereas MAPK, and cleaved caspase-3 implicated in cellular apoptosis were attenuated in the ischemic kidneys. SIGNIFICANCE In conclusion, this study shows that OLE could be used as therapeutic agent to reduce IRI through its anti-oxidative, anti-inflammatory and anti-apoptotic properties.
Collapse
Affiliation(s)
- Hana Nasrallah
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Imen Aissa
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité, équipe: Chimie Médicinale et Produits Naturels (LR11ES39), Faculté des Sciences de Monastir, Université de Monastir, Monastir, Tunisia
| | - Chérifa Slim
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Mohamed Ali Boujbiha
- Laboratoire de Bioressources: Biologie Intégrative & Valorisation (LR14ES06), Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Mohamed Amine Zaouali
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia; Département des Sciences du Vivant et Biotechnologie, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia.
| | - Mohamed Bejaoui
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Victoria Wilke
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Hichem Ben Jannet
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité, équipe: Chimie Médicinale et Produits Naturels (LR11ES39), Faculté des Sciences de Monastir, Université de Monastir, Monastir, Tunisia
| | - Habib Mosbah
- Laboratoire de Bioressources: Biologie Intégrative & Valorisation (LR14ES06), Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Hassen Ben Abdennebi
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| |
Collapse
|
14
|
Zhao X, Li Q, Wang C, Hu S, He X, Sun CC. Simultaneous taste-masking and oral bioavailability enhancement of Ligustrazine by forming sweet salts. Int J Pharm 2020; 577:119089. [PMID: 32001292 DOI: 10.1016/j.ijpharm.2020.119089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/20/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023]
Abstract
Ligustrazine (or Tetramethylpyrazine, TMP) is an active pharmaceutical ingredient that faces the challenges of bitter taste and low oral bioavailability by the commercial phosphate salt (TMP-Pho). We tackled these challenges by forming salts with two sweeteners, acesulfame (Acs) and saccharine (Sac). Both salts effectively masked the bitter taste of TMP. Compared to TMP-Pho, TMP-Sac shows 43% lower solubility and 11% lower permeability while TMP-Acs shows higher (two-fold) solubility but 24% lower permeability. Both TMP-Acs and TMP-Sac exhibited approximately 40% higher bioavailability through reducing the rate of TMP absorption. Thus, salt formation with both sweeteners simultaneously addressed the challenges brought about by the bitter taste and lower bioavailability of TMP.
Collapse
Affiliation(s)
- Xinghua Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000 China
| | - Qiang Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000 China
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shenye Hu
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xin He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000 China.
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
15
|
Ying J, Wu J, Zhang Y, Han Y, Qian X, Yang Q, Chen Y, Chen Y, Zhu H. Ligustrazine suppresses renal NMDAR1 and caspase-3 expressions in a mouse model of sepsis-associated acute kidney injury. Mol Cell Biochem 2019; 464:73-81. [PMID: 31732832 DOI: 10.1007/s11010-019-03650-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/03/2019] [Indexed: 12/16/2022]
Abstract
Sepsis-associated acute kidney injury (AKI) is a life threatening condition with high morbidity and mortality. The pathogenesis of AKI is associated with apoptosis. In this study, we investigated the effects of ligustrazine (LGZ) on experimental sepsis-associated AKI in mice. Sepsis-associated AKI was induced in a mice model using cecal ligation and puncture (CLP) method. Mice were administered LGZ (10, 30, and 60 mg/kg) via tail vein injection 0.5 h before CLP surgery. Mice survival was evaluated. Renal water content was detected. Urine samples were collected for ELISA of Kim1. Kidneys were collected for nucleic acid analysis and histological examination. Pathological assessment was used to determine the effect of LGZ on sepsis-associated AKI. Caspase-3 expression in kidney was assessed by immunohistochemistry. Renal NMDAR1 level was also determined. Treatment of LGZ improved mice survival rate; the effect was significant when administered at a high LGZ dose (60 mg/kg). Renal water content of mice undergoing CLP was significantly reduced by LGZ treatment. Both middle-dose and high-dose LGZ treatments reduced urine Kim1 level in sepsis-associated AKI mice. The severity of AKI in septic mice was reduced by middle-dose and high-dose LGZ administration. Immunohistochemical analysis revealed decreased caspase-3 and NMDAR1 levels in the kidney following middle-dose and high-dose LGZ treatments. RT-PCR assay showed a significant reduction in NMDAR1 mRNA expression in the kidney of middle-dose and high-dose LGZ-treated mice. LGZ exhibited protective effects against sepsis-associated AKI in mice, possibly via downregulation of renal NMDAR1 expression and its anti-apoptotic action by inhibiting caspase-3.
Collapse
Affiliation(s)
- Jing Ying
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Jin Wu
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| | - Yiwei Zhang
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Yangyang Han
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Xinger Qian
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Qiuhong Yang
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Yongjie Chen
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Yijun Chen
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Hao Zhu
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| |
Collapse
|
16
|
Ding Y, Du J, Cui F, Chen L, Li K. The protective effect of ligustrazine on rats with cerebral ischemia-reperfusion injury via activating PI3K/Akt pathway. Hum Exp Toxicol 2019; 38:1168-1177. [PMID: 31250662 DOI: 10.1177/0960327119851260] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study was to investigate the effects of ligustrazine on rats with cerebral ischemia-reperfusion (I/R) injury and to explore the potential mechanism. Transient focal cerebral ischemia Wistar rat model was established through middle cerebral artery occlusion. The cerebral I/R injury rats were treated with intraperitoneal injection of ligustrazine (1, 3, and 10 mg/kg). Human amniotic epithelial cells (HAECs) were treated with ligustrazine (1, 10, 100 μM) and PI3K inhibitor wortmannin (100 μM), following oxygen-glucose deprivation (OGD) treatment. The expression levels of protein kinase B (PKB or AKT), phospho-Akt (p-Akt), endothelial nitric oxide synthase (eNOS), and phosphor-eNOS (p-eNOS) in HAECs and brains of rats were measured by Western blot. The levels of nitric oxide (NO) in HAECs were measured by Griess method using NO2-/NO3- Assay Kit. Infarct volume and neurological deficits were evaluated 24 h after reperfusion. The levels of NO, p-Akt/Akt, and p-eNOS/eNOS in HAECs were significantly reduced after OGD, but ligustrazine treatment increased the levels of those factors in a dose-dependent manner, while those increases were reversed by PI3K inhibitor wortmannin. Similarly, p-Akt/Akt and p-eNOS/eNOS in brain tissue of rats with I/R were significantly reduced compared with control group (p < 0.05), but ligustrazine treatment increased the levels of p-Akt and p-eNOS in a dose-dependent manner (p < 0.05), while those increases were also reversed by using wortmannin. Ligustrazine also improved the damage of rat brain tissue caused by I/R, but wortmannin reversed the improvement. Ligustrazine plays a neuroprotective role in rats with cerebral I/R injury through the activation of PI3K/Akt pathway.
Collapse
Affiliation(s)
- Y Ding
- 1 Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - J Du
- 1 Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - F Cui
- 1 Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - L Chen
- 2 Outpatient Operating Room, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - K Li
- 1 Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
17
|
Ligustrazine Attenuates Myocardial Injury Induced by Coronary Microembolization in Rats by Activating the PI3K/Akt Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6791457. [PMID: 31191802 PMCID: PMC6525935 DOI: 10.1155/2019/6791457] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 01/04/2023]
Abstract
Background/Aims Coronary microembolization- (CME-) induced myocardial injury and progressive cardiac dysfunction are mainly caused due to CME-induced myocardial local inflammatory response and myocardial apoptosis. Ligustrazine plays an important protective role in multiple cardiovascular diseases, but its role and the protection mechanism in CME is unclear. This study hypothesized that ligustrazine attenuates CME-induced myocardial injury in rats. This study also explored the mechanism underlying this attenuation. Methods Forty SD rats were randomly divided into CME group, ligustrazine group, ligustrazine+LY294002 (ligustrazine+LY) group, and sham group (ten rats in each). In each group, the cardiac function, apoptotic index, serum c-troponin I (cTnI) level, inflammation [interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α)], and oxidative stress [nitric oxide (NO), superoxide dismutase (SOD), and malondialdehyde (MDA)] were determined. Western blotting was used to detect the proteins which are present in the PI3K/Akt pathway. Results Ligustrazine improved cardiac dysfunction induced by CME, increased serum NO and SOD activities, and decreased the serum level in IL-1β, MDA, cTnI, and TNF-α. Moreover, ligustrazine inhibited myocardial apoptosis, which is perhaps caused by the upregulated Bcl-2, the downregulated cleaved caspase-3 and Bax, and the increased protein level in endothelial nitric oxide synthase and phosphorylated Akt. These effects, however, were reduced if ligustrazine was coadministered with LY294002. Conclusions Ligustrazine attenuates CME-induced myocardial injury. The effects associated with this attenuation may be achieved by activating the myocardium PI3K/Akt signaling pathway.
Collapse
|
18
|
Yang L, Qiu Y, Liu J, Lin R, Yu P, Fu X, Hao B, Lei B. Retinal Transcriptome Analysis in the Treatment of Endotoxin-Induced Uveitis with Tetramethylpyrazine Eye Drops. J Ocul Pharmacol Ther 2019; 35:235-244. [PMID: 30994400 DOI: 10.1089/jop.2018.0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose: To investigate retinal gene expression of tetramethylpyrazine (TMP) eye drop-treated endotoxin-induced uveitis (EIU) in mice and to explore the mechanisms. Methods: The inflammatory signs of the anterior segment were evaluated, and clinical scores were graded. The retinal transcriptome from the TMP eye drop-treated and the untreated mice was identified by RNA sequencing (RNA-seq) strategy. Differentially expressed genes (DEGs) were validated by real-time PCR. The protein-protein interaction was analyzed using the STRING software. Results: Compared with the TMP-treated group, the inflammatory responses of the untreated control group were much severe and clinical score was remarkably higher (P < 0.001) at 24 h after lipopolysaccharide administration. RNA-seq assay identified 407 DEGs, among which 356 were upregulated and 51 were downregulated. There were 12 upregulated gene ontology terms enriched and 27 upregulated pathways. Seven DEGs, including inflammation-related, complement system-related, and interferon-related genes, were validated using quantitative PCR. Conclusions: TMP exerted anti-inflammatory effect in EIU. Local application of TMP inhibited retinal inflammatory response by regulating the inflammation-related genes, suggesting that TMP may be a potential novel therapeutic drug for ocular inflammation.
Collapse
Affiliation(s)
- Lin Yang
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Yiguo Qiu
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Jingyang Liu
- 2 People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, China
| | - Ru Lin
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Peng Yu
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Xinyu Fu
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Bingtao Hao
- 3 Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Bo Lei
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China.,2 People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, China
| |
Collapse
|
19
|
Wang S, Xia B, Qiao Z, Duan L, Wang G, Meng W, Liu Z, Wang Y, Zhang M. Tetramethylpyrazine attenuated bupivacaine-induced neurotoxicity in SH-SY5Y cells through regulating apoptosis, autophagy and oxidative damage. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1187-1196. [PMID: 31114159 PMCID: PMC6489565 DOI: 10.2147/dddt.s196172] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Abstract
Background: Bupivacaine (BUP) acts as a local anesthetic, which is extensively used for clinical patients but could generate neurotoxicity in neurons. Tetramethylpyrazine (TET) exhibits strong neuron protective effects against neurotoxicity. Hence, we investigate the effect of TET on BUP-induced neurotoxicity in SH-SY5Y cells. Methods: CCK-8 assay was used to detect cell proliferation in SH-SY5Y cells. In addition, Western blotting was used to examine Bax, Bcl-2, active caspase 3, LC3II, Beclin 1 and p-62 protein levels in cells. Moreover, ELISA assay was used to detect the levels of total glutathione (GS), superoxide dismutase (SOD) and malondialdehyde (MDA) in cells. Results: In this study, we found that TET attenuated the neurotoxicity of BUP on SH-SY5Y cells. Meanwhile, TET alleviated BUP-induced apoptosis in SH-SY5Y cell via decreasing the expressions of active caspase-3 and Bax and increasing the expression of Bcl-2. In addition, monodansylcadaverine staining assay and Western blotting results confirmed that TET induced autophagy in SH-SY5Y cells via increasing the LC3II/I and Beclin 1 levels. Furthermore, TET attenuated BUP-induced oxidative damage in SH-SY5Y cells via upregulation of the levels of total GS and SOD and downregulation of the level of MDA. Interesting, the protective effects of TET against BUP-induced neurotoxicity in SH-SY5Y cells were reversed by autophagy inhibitor 3-methyladenine (3MA). Conclusion: These data indicated that TET may play a neuroprotective role via inhibiting apoptosis and inducing autophagy in SH-SY5Y cells. Therefore, TET may be a potential agent for the treatment of human neurotoxicity induced by BUP.
Collapse
Affiliation(s)
- Shouliang Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Bin Xia
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Zonglei Qiao
- Department of Anesthesiology, Qingyun County People's Hospital, Dezhou 253700, Shandong Province, People's Republic of China
| | - Lian Duan
- Department of Ophthalmology, Qianfoshan Hospital Affiliated to Medical School of Shandong University, Jinan 250014, Shandong Province, People's Republic of China
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Wenjun Meng
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Zhifei Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Yu Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| |
Collapse
|
20
|
Antioxidants as Renoprotective Agents for Ischemia during Partial Nephrectomy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8575398. [PMID: 30882000 PMCID: PMC6383545 DOI: 10.1155/2019/8575398] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/29/2018] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
Abstract
Small renal masses have been diagnosed increasingly in recent decades, allowing surgical treatment by partial nephrectomy. This treatment option is associated with better renal function preservation, in comparison with radical nephrectomy. However, for obtaining a bloodless field during surgery, occlusion of renal artery and veins is often required, which results in transitory ischemia. The renal ischemia-reperfusion injury is associated with increased reactive oxygen species production leading to renal tissue damage. Thus, the use of antioxidants has been advocated in the partial nephrectomy perioperative period. Several antioxidants were investigated in regard to renal ischemia-reperfusion injury. The present manuscript aims to present the literature on the most commonly studied antioxidants used during partial nephrectomy. The results of experimental and clinical studies using antioxidants during partial nephrectomy are reported. Further, alimentary sources of some antioxidants are presented, stimulating future studies focusing on perioperative antioxidant-rich diets.
Collapse
|
21
|
Li HD, Meng XM, Huang C, Zhang L, Lv XW, Li J. Application of Herbal Traditional Chinese Medicine in the Treatment of Acute Kidney Injury. Front Pharmacol 2019; 10:376. [PMID: 31057404 PMCID: PMC6482429 DOI: 10.3389/fphar.2019.00376] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid loss of renal function, which may further develop into chronic kidney damage (CKD) or even end-stage renal disease (ESRD). AKI is a global health problem associated with high morbidity and costly treatments, and there is no specific or effective strategy to treat AKI. In recent years, Traditional Chinese Medicine (TCM) has attracted more attention, with lines of evidence showing that application of TCM improved AKI, and the mechanisms of action for some TCMs have been well illustrated. However, reviews summarizing the progress in this field are still lacking. In this paper, we reviewed TCM preparations and TCM monomers in the treatment of AKI over the last 10 years, describing their renal protective effects and mechanisms of action, including alleviating inflammation, programmed cell death, necrosis, and reactive oxygen species. By focusing on the mechanisms of TCMs to improve renal function, we provide effective complementary evidence to promote the development of TCMs to treat AKI. Moreover, we also summarized TCMs with nephrotoxicity, which provides a more comprehensive understanding of TCMs in the treatment of AKI. This review may provide a theoretical basis for the clinical application of TCMs in the future.
Collapse
Affiliation(s)
- Hai-Di Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lei Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiong-Wen Lv
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Jun Li, ;
| |
Collapse
|
22
|
Chen DQ, Hu HH, Wang YN, Feng YL, Cao G, Zhao YY. Natural products for the prevention and treatment of kidney disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:50-60. [PMID: 30466992 DOI: 10.1016/j.phymed.2018.09.182] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/18/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is one of the common causes resulting in a high morbidity and mortality. Renal fibrosis is the main pathological features of CKD. Natural products have begun to gain widely popularity worldwide for promoting healthcare and preventing CKD, and have been used as a conventional or complementary therapy for CKD treatment. PURPOSE The present paper reviewed the therapeutic effects of natural products on CKD and revealed the molecular mechanisms of their anti-fibrosis. METHODS All the available information on natural products against renal fibrosis was collected via a library and electronic search (using Web of Science, Pubmed, ScienceDirect, Splinker, etc.). RESULTS Accumulated evidence demonstrated that natural products exhibited the beneficial effects for CKD treatment and against renal fibrosis. This review presents an overview of the molecular mechanism of CKD and natural products against renal fibrosis, followed by an in-depth discussion of their molecular mechanism of natural products including isolated compounds and crude extracts against renal fibrosis in vitro and in vivo. A number of isolated compounds have been confirmed to retard renal fibrosis. CONCLUSION The review provides comprehensive insights into pathophysiological mechanisms of CKD and natural products against renal fibrosis. Particular challenges are presented and placed within the context of future applications of natural products against renal fibrosis.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - He-He Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yan-Ni Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ya-Long Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
23
|
Bai XY, Wang XF, Zhang LS, Du PC, Cao Z, Hou Y. Tetramethylpyrazine ameliorates experimental autoimmune encephalomyelitis by modulating the inflammatory response. Biochem Biophys Res Commun 2018; 503:1968-1972. [PMID: 30078676 DOI: 10.1016/j.bbrc.2018.07.143] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is a disabling inflammatory and demyelinating disorder of the central nervous system. Tetramethylpyrazine (TMP) has been demonstrated to ameliorate cerebral ischemic injury and spinal cord injury by inhibiting inflammatory cell activation and pro-inflammatory cytokine production. However, the effects of TMP on MS have not been studied. In this study, we evaluated the effects of TMP on the inflammatory response in experimental autoimmune encephalomyelitis (EAE), which is an animal model of MS. TMP (30 mg/kg) treatment significantly reduced the expression levels of NLR Family, Pyrin Domain-Containing 3 Protein inflammasome and caspase-1and decreased inflammatory infiltration and glial activation. Moreover, TMP (30 mg/kg) suppressed the expression of pro-inflammatory cytokines (interleukin-18 [IL-18] and IL-17) and promoted the expression of an anti-inflammatory cytokine (IL-10). The reduced inflammatory response resulted in improvement in clinical scores and decreased demyelination in EAE mice. Therefore, our results demonstrate that TMP (30 mg/kg) improved functional recovery in part by reducing inflammation in EAE mice. TMP may be a potential therapeutic agent for MS therapy.
Collapse
Affiliation(s)
- Xian-Yong Bai
- Department of Histology and Embryology, Binzhou Medical University, Yantai, PR China
| | - Xi-Feng Wang
- Department of Critical Care Medicine, Yu Huang Ding Hospital, Qingdao University, Yantai, PR China
| | - Lian-Shuang Zhang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, PR China
| | - Peng-Chao Du
- Department of Pathology, Binzhou Medical University, Yantai, PR China
| | - Zhang Cao
- Department of Pathology, Binzhou Medical University, Yantai, PR China
| | - Yun Hou
- Department of Histology and Embryology, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
24
|
Abstract
Acute kidney injury, which is caused by renal ischemia-reperfusion injury (IRI), occurs
in several clinical situations and causes severe renal damage. There is no effective
therapeutic agent available for renal IRI at present. In this study, we performed an
experiment based on an in vivo murine model of renal IRI to examine the
effect of carnosol. Thirty Sprague-Dawley rats were randomized into three groups (10 rats
in each group): the sham, IRI, and carnosol groups. Rats in the carnosol group were
injected intravenously with 3 mg/kg of carnosol, and those in the sham and IRI groups were
injected intravenously with 10% dimethyl sulfoxide 1 h before ischemia. Rats were
sacrificed after 24 h of reperfusion. The blood and kidneys were harvested, renal function
was assessed, and histologic evaluation was performed to analyze renal injury. A renal
myeloperoxidase activity assay, in-situ apoptosis examination,
enzyme-linked immunosorbent assay, immunohistochemical assay, and western blot were also
performed. Carnosol pretreatment significantly reduced renal dysfunction and histologic
damage induced by renal IRI. Carnosol pretreatment suppressed renal inflammatory cell
infiltration and pro-inflammatory cytokine expression. In addition, carnosol markedly
inhibited apoptotic tubular cell death, caspase-3 activation, and activation of the p38
pathway. Carnosol pretreatment protects rats against renal IRI by inhibiting inflammation
and apoptosis. Although future investigation is needed, carnosol may be a potential
therapeutic agent for preventing renal IRI.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yong Zhang
- Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yichun Zheng
- Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Nan Zhang
- Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| |
Collapse
|
25
|
Yang H, Wu S. Retracted Article: Ligustrazine attenuates renal damage by inhibiting endoplasmic reticulum stress in diabetic nephropathy by inactivating MAPK pathways. RSC Adv 2018; 8:21816-21822. [PMID: 35541710 PMCID: PMC9080983 DOI: 10.1039/c8ra01674g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/13/2018] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a major cause of chronic kidney disease around the world.
Collapse
Affiliation(s)
- Hongling Yang
- Department of Nephrology
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
- Chengdu
- China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital
| | - Shukun Wu
- Department of Nephrology
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
- Chengdu
- China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital
| |
Collapse
|
26
|
Lu J, Yi Y, Pan R, Zhang C, Han H, Chen J, Liu W. Berberine protects HK-2 cells from hypoxia/reoxygenation induced apoptosis via inhibiting SPHK1 expression. J Nat Med 2017; 72:390-398. [PMID: 29260413 DOI: 10.1007/s11418-017-1152-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/02/2017] [Indexed: 02/01/2023]
Abstract
Renal ischemia reperfusion injury (RIRI) refers to the irreversible damage for renal function when blood perfusion is recovered after ischemia for an extended period, which is common in clinical surgeries and has been regarded as a major risk for acute renal failures (ARF) that is accompanied with unimaginably high morbidity and mortality. Hypoxia during ischemia followed by reoxygenation via reperfusion serves as a major event contributing to cell apoptosis, which has been widely accepted as the vital pathogenesis in RIRI. Preventing apoptosis in renal tubular epithelial cell has been considered as effective method for blocking RIRI. In this paper, we established a hypoxia/reoxygenation (H/R) injury model in human proximal tubular epithelial HK-2 cells. Here, we found increased SPHK1 levels in H/R injured HK-2 cells, which could be significantly down regulated after berberine treatment. Berberine has been reported to exert a protective effect on H/R-induced apoptosis of HK-2 cells. So, in our present study, we planned to investigate whether SPHK1 participated in the anti-apoptosis process of berberine in H/R injured HK-2 cells. Our study confirmed the protective effect of berberine against H/R-induced apoptosis in HK-2 cells through promoting cells viability, inhibiting cells apoptosis, and down-regulating p-P38, caspase-3, caspase-9 as well as SPHK1, while up regulating the ratio of Bcl-2/Bax. However, SPHK1 overexpression in HK-2 cells induced severe apoptosis, which can be significantly ameliorated with additional berberine treatment. We concluded that berberine could remarkably prevent H/R-induced apoptosis in HK-2 cells through down-regulating SPHK1 expression levels, and the mechanisms included the suppression of p38 MAPK activation and mitochondrial stress pathways.
Collapse
Affiliation(s)
- Jianrao Lu
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Yang Yi
- Department of Nephrology, Jingan District Central Hospital/Jingan Branch, Huashan Hospital affiliated to Fudan University, Shanghai, 200040, China
| | - Ronghua Pan
- Department of Nephrology, Liyang Hospital of traditional Chinese medicine, Jiangsu Province, 213300, China.
| | - Chuanfu Zhang
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Haiyan Han
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Jie Chen
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Wenrui Liu
- Department of Nephrology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| |
Collapse
|
27
|
Zhang Y, Rong S, Feng Y, Zhao L, Hong J, Wang R, Yuan W. Simvastatin attenuates renal ischemia/reperfusion injury from oxidative stress via targeting Nrf2/HO-1 pathway. Exp Ther Med 2017; 14:4460-4466. [PMID: 29067120 DOI: 10.3892/etm.2017.5023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 06/15/2017] [Indexed: 12/26/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury of the kidneys is commonly encountered in the clinic. The present study assessed the efficacy of simvastatin in preventing I/R-induced renal injury in a rat model and investigated the corresponding molecular mechanisms. Rats were divided into 3 groups, including a sham, I/R and I/R + simvastatin group. The results revealed that in the I/R group, the levels of blood urea nitrogen, serum creatinine and lactate dehydrogenase were significantly higher than those in the sham group, which was significantly inhibited by simvastatin pre-treatment. I/R significantly decreased superoxide dismutase activity compared with that in the sham group, which was largely rescued by simvastatin. Furthermore, I/R significantly increased the malondialdehyde content compared with that in the sham group, which was reduced by simvastatin. Hematoxylin-eosin staining revealed no obvious morphological abnormalities in the sham group, while I/R led to notable tubular cell swelling, vacuolization, cast formation and tubular necrosis, which was rescued by simvastatin. A terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay demonstrated that I/R significantly increased the number of apoptotic cells compared with that in the sham group, which was significantly inhibited by simvastatin. Western blot analysis demonstrated that simvastatin upregulated I/R-induced increases of nuclear factor erythroid-2-related factor 2 (Nrf2) and anti-oxidant enzyme heme oxygenase-1 (HO-1). Reverse-transcription quantitative PCR indicated that changes in the mRNA levels of Nrf2 and HO-1 were consistent with the western blot results. It was concluded that simvastatin treatment led to upregulation of HO-1 protein levels through activating the Nrf2 signaling pathway to ultimately protect the kidneys from I/R-associated oxidative damage.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Emergency Intensive Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 200082, P.R. China
| | - Shu Rong
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200082, P.R. China
| | - Yi Feng
- Department of Emergency Intensive Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 200082, P.R. China
| | - Liqun Zhao
- Department of Emergency Intensive Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 200082, P.R. China
| | - Jiang Hong
- Department of Emergency Intensive Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 200082, P.R. China
| | - Ruilan Wang
- Department of Emergency Intensive Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 200082, P.R. China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200082, P.R. China
| |
Collapse
|
28
|
Li S, Wei D, Mao Z, Chen L, Yan X, Li Y, Dong S, Wang D. Design, synthesis, immunocytochemistry evaluation, and molecular docking investigation of several 4-aminopyridine derivatives as potential neuroprotective agents for treating Parkinson's disease. Bioorg Chem 2017; 73:63-75. [PMID: 28618343 DOI: 10.1016/j.bioorg.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/22/2017] [Accepted: 05/21/2017] [Indexed: 11/20/2022]
Abstract
Neuroprotection refers to the relative preservation of neuronal structure and function. Neuroprotective agents refer to substances that are capable of preserving brain function and structure. Currently, there are no neuroprotective agents available that can effectively relieve the progression of Parkinson's disease. In this work, five novel 4-aminopyridine derivatives, including three amides and two ureas, were designed, synthesized, and evaluated using the rat PC12 mice pheochromocytoma cell line as an in vitro model. As well as human Rho kinase inhibitory experiment was performed. Among them, compound 3, which exhibited high cell viability, low cytotoxicity and good efficacy of inhibition on α-synuclein, oxidation, inflammation and Rho kinase, was profound as potential agents for Parkinson's disease (PD).
Collapse
Affiliation(s)
- Shulin Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Daiyan Wei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhuo Mao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shengjie Dong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Donghua Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
29
|
Mikawlrawng K, Rani R, Kumar S, Bhardwaj AR, Prakash G. Anti-paralytic medicinal plants - Review. J Tradit Complement Med 2017; 8:4-10. [PMID: 29321983 PMCID: PMC5755955 DOI: 10.1016/j.jtcme.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 02/01/2017] [Accepted: 02/09/2017] [Indexed: 01/17/2023] Open
Abstract
Paralysis is the loss of the ability of one or more muscles to move, due to disruption of signaling between the nervous system and muscles. The most common causes of paralysis are stroke, head injury, spinal cord injury (SCI) and multiple sclerosis. The search for cure of paralysis is yet to be found. Many ethnobotanical surveys have reported the use of medicinal plants by various ethnic communities in treating and curing paralysis. The present review discusses the use of medicinal plants in India for ameliorating and curing paralytic conditions, as well as discuses some of the important developments in future possible applications of medicinal plants in treatment of paralysis. This review reports the use of 37 medicinal plants for their application and cure of ailments related to paralysis. Out of the 37 plants documented, 11 plants have been reported for their ability to cure paralysis. However, the information on the documented plants were mostly found to be inadequate, requiring proper authentication with respect to their specificity, dosage, contradictions etc. It is found that despite the claims presented in many ethnobotanical surveys, the laboratory analysis of these plants remain untouched. It is believed that with deeper intervention on analysis of bioactive compounds present in these plants used by ethic traditional healers for paralysis, many potential therapeutic compounds can be isolated for this particular ailment in the near future.
Collapse
Affiliation(s)
| | - Roma Rani
- Department of Botany, Ramjas College, University of Delhi, India
| | - Suresh Kumar
- Department of Botany, Ramjas College, University of Delhi, India
| | - Ankur R Bhardwaj
- Department of Botany, Ramjas College, University of Delhi, India
| | - Geeta Prakash
- Department of Botany, Gargi College, University of Delhi, India
| |
Collapse
|
30
|
Huang W, Yang Y, Zeng Z, Su M, Gao Q, Zhu B. Effect of Salvia miltiorrhiza and ligustrazine injection on myocardial ischemia/reperfusion and hypoxia/reoxygenation injury. Mol Med Rep 2016; 14:4537-4544. [PMID: 27748867 PMCID: PMC5101990 DOI: 10.3892/mmr.2016.5822] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/17/2016] [Indexed: 12/26/2022] Open
Abstract
Salvia miltiorrhiza and ligustrazine are traditional Chinese medicines that have been used in combination for treatment of cardiovascular disease, including coronary heart disease, cardiac angina and atherosclerosis in Asia, in particular, China. The present study aimed to determine the effect of S. miltiorrhiza and ligustrazine injection (SLI) on myocardial ischemia/reperfusion (I/R) and hypoxia/reoxygenation (H/R) injuries via the Akt serine/threonine kinase (Akt)-endothelial nitric oxide synthase (eNOS) signaling pathway. Male Sprague-Dawley rats were randomly assigned into six groups: i) Sham group; ii) I/R group; iii) Low-SLI group (6.8 mg/kg/day, i.p.); iv) Medium-SLI group (20.4 mg/kg/day, i.p.); v) High-SLI group (61.2 mg/kg/day, i.p.); vi) verapamil group (6 mg/kg/day, i.p.). Prior to surgery, the aforementioned groups were pretreated with a homologous drug once per day for 3 days. The effect of SLI following 35 min coronary artery occlusion and 2 h reperfusion was evaluated by determining infarct size, hemodynamics, biochemical values and histological observations. Additionally, cell viability, caspase-3 expression, B cell leukemia/lymphoma-2 (Bcl-2)/Bcl-2-associated X protein (Bax) ratio, phosphorylated (p-)Akt and p-eNOS were also investigated following 2 h simulated ischemia and 2 h simulated reperfusion in H9C2 cardiomyocyte cells. Pretreatment with SLI significantly improved cardiac function in a dose-dependent manner and reduced myocardial infarct size, creatine kinase, lactate dehydrogenase and malondialdehyde levels in blood serum. Additionally, myocardial histopathology changes in the rat model were also alleviated in SLI treatment groups. The present in vitro study revealed that treatment with SLI reduced the apoptotic rate of H9C2 cells by inhibiting the activation of caspase-3 and increasing the Bcl-2/Bax ratio. The effect of SLI was associated with increased phosphorylation of the survival kinase Akt at Ser473 and its downstream target eNOS following H/R. The present study determined that SLI may alleviate I/R injury in cardiomyocytes and inhibit apoptosis in rats by the activation of the Akt-eNOS signaling pathway, and downregulation of the expression levels of proapoptotic factors, including caspase-3.
Collapse
Affiliation(s)
- Wendong Huang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yongfei Yang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhi Zeng
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Meiling Su
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qi Gao
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Banghao Zhu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
31
|
Niu J, Han L, Gong F. Therapeutic Effect of External Application of Ligustrazine Combined with Holistic Nursing on Pressure Sores. Med Sci Monit 2016; 22:2871-7. [PMID: 27523814 PMCID: PMC4988363 DOI: 10.12659/msm.897032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background This study aimed to explore the therapeutic effect of external application of ligustrazine combined with holistic nursing on pressure sores, as well as the underlying mechanism. Material/Methods From February 2014 to March 2015, a total of 32 patients with Phase II and Phase III pressure sores were enrolled and randomly assigned to an experimental group or a control group. The clinical data were comparable between the 2 groups. In addition to holistic nursing, the patients in the experimental group received 4 weeks of continuous external application of ligustrazine, whereas patients in the control group received compound clotrimazole cream. Therapeutic effect and healing time were recorded. HaCaT cells were used as an in vitro model for mechanism analysis of the effect of ligustrazine in treating pressure sores. After culturing with different concentrations of ligustrazine or the inhibitor of AKT (LY294002) for 72 h, cell viability, clone formation numbers, and levels of phosphatidyl inositol 3-kinase (PI3K), p-AKT, and p-mammalian target of rapamycin (mTOR) were determined. Results Compared to the control group, the total effective rate in the experimental group was significantly higher, and the healing time was significantly reduced. Cell viability and clone formation numbers were significantly upregulated by ligustrazine in a dose-dependent manner. Both the cell viability and clone formation numbers were significantly inhibited by application of LY294002. Conclusions Our results suggest that ligustrazine combined with holistic nursing is an effective treatment of pressure sores. The protective effect may be associated with the promotion of cell growth by activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Junzhi Niu
- Department of Information, Jining No.1 People's Hospital, Jining, Shandong, China (mainland)
| | - Lin Han
- Department of Nursing, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| | - Fen Gong
- Department of Surgical Outpatient, Jining No.1 People's Hospital, Jining, Shandong, China (mainland)
| |
Collapse
|
32
|
JiaWeiDangGui Decoction Ameliorates Proteinuria and Kidney Injury in Adriamycin-Induced Rat by Blockade of TGF-β/Smad Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5031890. [PMID: 27403197 PMCID: PMC4923567 DOI: 10.1155/2016/5031890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/08/2016] [Accepted: 04/27/2016] [Indexed: 11/23/2022]
Abstract
JiaWeiDangGui (JWDG) decoction has anti-inflammatory and antifibrotic effects, which is used widely for the treatment of various kidney diseases. In previous studies, we have found that JWDG decoction can reduce the quantity of proteinuria, but the mechanism was unknown. Here, we studied the protective effect of JWDG decoction in adriamycin-induced nephropathy on rat. JWDG decoction, at 10 mL/kg/d, 20 mL/kg/d, and 40 mL/kg/d, was orally administered daily for 12 weeks. Therapeutic effects and mechanisms were further examined. The kidney function related biochemical indexes were measured by automatic biochemistry analyzer. The pathomorphological changes were observed using light and transmission electron microcopies. The proteins expressions of podocin, nephrin, collagen IV, and fibronectin (FN) were examined by immunohistochemical staining, and key proteins involved in TGF-β/Smad signaling were evaluated by RT-PCR and western blotting. Compared with vehicle-treated controls, JWDG decoction decreased the quantity of proteinuria; reduced glomerulosclerotic lesions induced by ADR; and preserved the expression of podocin and nephrin. JWDG decoction also inhibited the expression of the collagen IV, FN, and fibrogenic TGF-β. Further studies revealed that inhibition of renal fibrosis was associated with the blockade of TGF-β/Smad signaling and downregulation of snail expression dose dependently. JWDG decoction prevents proteinuria production, podocyte dysfunction, and kidney injury in adriamycin nephropathy by inhibiting TGF-β/Smad signaling.
Collapse
|
33
|
Cardiovascular Actions and Therapeutic Potential of Tetramethylpyrazine (Active Component Isolated from Rhizoma Chuanxiong): Roles and Mechanisms. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2430329. [PMID: 27314011 PMCID: PMC4893570 DOI: 10.1155/2016/2430329] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/07/2016] [Accepted: 04/27/2016] [Indexed: 01/02/2023]
Abstract
Tetramethylpyrazine (TMP), a pharmacologically active component isolated from the rhizome of the Chinese herb Rhizoma Chuanxiong (Chuanxiong), has been clinically used in China and Southeast Asian countries for the prevention and treatment of cardiovascular diseases (CVDs) for about fifty years. The pharmacological effects of TMP on the cardiovascular system have attracted great interest. Emerging experimental studies and clinical trials have demonstrated that TMP prevents atherosclerosis as well as ischemia-reperfusion injury. The cardioprotective effects of TMP are mainly related to its antioxidant, anti-inflammatory, or calcium-homeostasis effects. This review focuses on the roles and mechanisms of action of TMP in the cardiovascular system and provides a novel perspective on TMP's clinical use.
Collapse
|
34
|
Jiang G, Liu X, Wang M, Chen H, Chen Z, Qiu T. Oxymatrine ameliorates renal ischemia-reperfusion injury from oxidative stress through Nrf2/HO-1 pathway. Acta Cir Bras 2015; 30:422-9. [PMID: 26108031 DOI: 10.1590/s0102-865020150060000008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/14/2015] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To investigate if oxymatrine pretreatment could ameliorate renal I/R injury induced in rats and explore the possible role of oxymatrine in Nrf2/HO-1 pathway. METHODS Unilaterally nephrectomized rats were insulted by I/R in their left kidney. Twenty four rats were randomly divided into three groups: sham group, I/R + saline-treated group, I/R + OMT-treated group. Oxymatrine or vehicle solution was administered intraperitoneally injected 60 min before renal ischemia, respectively. Renal function, histology, makers of oxidative stress, cell apoptosis and Nrf2/HO-1 expressions were assessed. RESULTS Oxymatrine pretreatment exhibited an improved renal functional recovery, alleviated histological injury and oxidative stress, inhibiting tubular apoptosis, and accompanied by upregulated the expression of Nrf2/HO-1 proteins. CONCLUSION Oxymatrine may attenuate renal ischemia/reperfusion injury, and this renoprotective effect may be through activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Guanjun Jiang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Min Wang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Hui Chen
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Tao Qiu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
35
|
Simeoni L, Thurm C, Kritikos A, Linkermann A. Redox homeostasis, T cells and kidney diseases: three faces in the dark. Clin Kidney J 2015; 9:1-10. [PMID: 26798455 PMCID: PMC4720211 DOI: 10.1093/ckj/sfv135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
The redox equilibrium is crucial for the maintenance of immune homeostasis. Here, we summarize recent data showing that oxidation regulates T-cell functions and that alterations of the redox equilibrium may play an important role in the pathogenesis of inflammatory conditions affecting the kidneys. We further discuss potential links between oxidation, T cells and renal diseases such as systemic lupus erythematosus, renal ischaemia/reperfusion injury, end-stage renal disease and hypertension. The basic understanding of oxidation as a means by which diseases are directly affected results in unexpected pathophysiological similarities. Finally, we describe potential therapeutic options targeting redox systems for the treatment of nephropathies affecting humans.
Collapse
Affiliation(s)
- Luca Simeoni
- Otto-von-Guericke University, Institute of Molecular and Clinical Immunology , Magdeburg , Germany
| | - Christoph Thurm
- Otto-von-Guericke University, Institute of Molecular and Clinical Immunology , Magdeburg , Germany
| | - Andreas Kritikos
- Otto-von-Guericke University, Institute of Molecular and Clinical Immunology , Magdeburg , Germany
| | - Andreas Linkermann
- Clinic for Nephrology and Hypertension , Christian-Albrechts-University Kiel , Germany
| |
Collapse
|
36
|
Yan S, Yue YZ, Zeng L, Yue J, Li WL, Mao CQ, Yang L. Effect of intra-abdominal administration of ligustrazine nanoparticles nano spray on postoperative peritoneal adhesion in rat model. J Obstet Gynaecol Res 2015; 41:1942-50. [PMID: 26419644 DOI: 10.1111/jog.12807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 06/14/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Shuai Yan
- Suzhou Hospital of Traditional Chinese Medicine; Suzhou China
| | - Yin-zi Yue
- Suzhou Hospital of Traditional Chinese Medicine; Suzhou China
| | - Li Zeng
- Library of Nanjing University of Chinese Medicine; Nanjing China
| | - Jin Yue
- Yancheng Hospital of Traditional Chinese Medicine; Yancheng China
| | - Wen-lin Li
- Library of Nanjing University of Chinese Medicine; Nanjing China
| | - Chun-qin Mao
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
| | - Lan Yang
- Library of Nanjing University of Chinese Medicine; Nanjing China
| |
Collapse
|
37
|
A Novel Ligustrazine Derivative T-VA Prevents Neurotoxicity in Differentiated PC12 Cells and Protects the Brain against Ischemia Injury in MCAO Rats. Int J Mol Sci 2015; 16:21759-74. [PMID: 26370988 PMCID: PMC4613278 DOI: 10.3390/ijms160921759] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023] Open
Abstract
Broad-spectrum drugs appear to be more promising for the treatment of acute ischemic stroke. In our previous work, a new ligustrazine derivative (3,5,6-trimethylpyrazin-2-yl) methyl 3-methoxy-4-[(3,5,6-trimethylpyrazin-2-yl)methoxy]benzoate (T-VA) showed neuroprotective effect on injured PC12 cells (EC50 = 4.249 µM). In the current study, we show that this beneficial effect was due to the modulation of nuclear transcription factor-κB/p65 (NF-κB/p65) and cyclooxygenase-2 (COX-2) expressions. We also show that T-VA exhibited neuroprotective effect in a rat model of ischemic stroke with concomitant improvement of motor functions. We propose that the protective effect observed in vivo is owing to increased vascular endothelial growth factor (VEGF) expression, decreased oxidative stress, and up-regulation of Ca2+–Mg2+ ATP enzyme activity. Altogether, our results warrant further studies on the utility of T-VA for the potential treatment of ischemic brain injuries, such as stroke.
Collapse
|
38
|
Lin JB, Zheng CJ, Zhang X, Chen J, Liao WJ, Wan Q. Effects of Tetramethylpyrazine on Functional Recovery and Neuronal Dendritic Plasticity after Experimental Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:394926. [PMID: 26379744 PMCID: PMC4563062 DOI: 10.1155/2015/394926] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 12/17/2022]
Abstract
The 2,3,5,6-tetramethylpyrazine (TMP) has been widely used in the treatment of ischemic stroke by Chinese doctors. Here, we report the effects of TMP on functional recovery and dendritic plasticity after ischemic stroke. A classical model of middle cerebral artery occlusion (MCAO) was established in this study. The rats were assigned into 3 groups: sham group (sham operated rats treated with saline), model group (MCAO rats treated with saline) and TMP group (MCAO rats treated with 20 mg/kg/d TMP). The neurological function test of animals was evaluated using the modified neurological severity score (mNSS) at 3 d, 7 d, and 14 d after MCAO. Animals were euthanized for immunohistochemical labeling to measure MAP-2 levels in the peri-infarct area. Golgi-Cox staining was performed to test effect of TMP on dendritic plasticity at 14 d after MCAO. TMP significantly improved neurological function at 7 d and 14 d after ischemia, increased MAP-2 level at 14 d after ischemia, and enhanced spine density of basilar dendrites. TMP failed to affect the spine density of apical dendrites and the total dendritic length. Data analyses indicate that there was significant negative correlation between mNSS and plasticity measured at 14 d after MCAO. Thus, enhanced dendritic plasticity contributes to TMP-elicited functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jun-Bin Lin
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chan-Juan Zheng
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Rehabilitation Medicine, Center of Brain Department, Hubei Xinhua Hospital, Wuhan 430015, China
| | - Xuan Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Juan Chen
- Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Wei-Jing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qi Wan
- Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
39
|
Ji XX, Song XL, Qian W, Yu XL, Zhu JY. Effects and mechanism of action of ligustrazine on isoprenaline-induced cardiomyocyte hypertrophy. Cell Biochem Biophys 2015; 70:1513-8. [PMID: 25027096 DOI: 10.1007/s12013-014-0086-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of the study is to explore the effects and mechanism of the action of ligustrazine on isoprenaline-induced cardiomyocyte hypertrophy. Primary culture of neonatal rat cardiomyocytes was used as the model, and isoprenaline was used to induce cardiomyocyte hypertrophy. Effects of different dosages of ligustrazine polysaccharide on the cardiomyocyte were observed. RT-PCR was used to detect the expression of atrial natriuretic factor (ANP) mRNA, and Western blot analysis was used to detect the CaN protein level in cardiomyocytes. After treating with ligustrazine, the significant increase of MDA content and decrease of SOD activity were inhibited in supernatant. Compared to the control group, ANP mRNA in isoprenaline-treated cardiomyocytes was significantly increased (P < 0.05); compared to the isoprenaline group, ANP mRNA was significantly decreased in all ligustrazine groups (P < 0.01). In all ligustrazine groups, the CaN expression was inhibited in isoprenaline-treated cardiomyocytes in a dose-dependent manner. In conclusion, ligustrazine has protective effects on isoprenaline-induced neonatal rat cardiomyocyte, which may be related to the decrease of CaN expression.
Collapse
Affiliation(s)
- Xuan Xiu Ji
- Second Department of Geriatric Division, General Hospital of Jinan Military Region, Jinan, 250031, China
| | | | | | | | | |
Collapse
|
40
|
Moris D, Georgopoulos S, Felekouras E, Patsouris E, Theocharis S. The effect of endocannabinoid system in ischemia-reperfusion injury: a friend or a foe? Expert Opin Ther Targets 2015; 19:1261-75. [PMID: 25936364 DOI: 10.1517/14728222.2015.1043268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION In recent years, the endocannabinoid system has emerged as a new therapeutic target in variety of disorders associated with inflammation and tissue injury, including those of the neuronal, liver, renal and cardiovascular system. The aim of the present review is to elucidate the effect of endocannabinoid system on ischemia reperfusion injury (IRI) in different organs and systems. AREAS COVERED The MEDLINE/PubMed database was searched for publications with the medical subject heading Cannabinoids* (CBs), CB receptors*, organ*, ischemia/reperfusion injury*, endocannabinoid* and system*. The initial relevant studies retrieved from the literature were 91 from PubMed. This number was initially limited to 35, after excluding the reviews and studies reporting data for receptors other than cannabinoid. EXPERT OPINION CB2 receptors may play an important compensatory role in controlling tissue inflammation and injury in cells of the neuronal, cardiovascular, liver and renal systems, as well as in infiltrating monocytes/macrophages and leukocytes during various pathological conditions of the systems (atherosclerosis, restenosis, stroke, myocardial infarction, heart, liver and renal failure). These receptors limit inflammation and associated tissue injury. On the basis of preclinical results, pharmacological modulation of CB2 receptors may hold a unique therapeutic potential in stroke, myocardial infarction, atherosclerosis, IRI and liver disease.
Collapse
Affiliation(s)
- Demetrios Moris
- National and Kapodistrian University of Athens , Anastasiou Gennadiou 56, 11474, Athens , Greece +30 210 6440590 ;
| | | | | | | | | |
Collapse
|
41
|
Tan F, Fu W, Cheng N, Meng DI, Gu Y. Ligustrazine reduces blood-brain barrier permeability in a rat model of focal cerebral ischemia and reperfusion. Exp Ther Med 2015; 9:1757-1762. [PMID: 26136889 DOI: 10.3892/etm.2015.2365] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/03/2015] [Indexed: 01/25/2023] Open
Abstract
Ligustrazine, also known as 2,3,5,6-tetramethylpyrazine (TMP), one of the major active compounds of Ligusticum wallichii Franchat., has been shown to reduce neuroinflammation and protect neurons during cerebral ischemia/reperfusion injury. However, whether it reduces blood-brain barrier (BBB) permeability during ischemic stroke is unclear. The aim of the present study was to investigate the role that TMP plays in protecting the BBB integrity in ischemia/reperfusion injury and to investigate the relevant mechanisms involved. Rats received an intraperitoneal injection of 20 mg/kg TMP 15 min before the onset of ischemia, which was induced by middle cerebral artery occlusion. Infarct volume, neurological score, brain edema, BBB permeability and tight junction protein impairment were observed. The results showed that TMP reduced the neurological score and levels of brain infarction and edema. In addition, TMP significantly decreased BBB permeability and prevented the impairment of occludin and claudin-5, two tight junction protein components of the BBB, in rat brains with ischemia/reperfusion injury. In addition, the expression and activity of matrix metalloproteinases, enzymes responsible for the degradation of the extracellular matrix and tight junctions, were reduced in the rat brains by TMP treatment. These results combined suggest that TMP reduces BBB permeability as well as neuronal damage in focal cerebral ischemia/reperfusion injury in rats.
Collapse
Affiliation(s)
- Feng Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| | - Wenjun Fu
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Nanfang Cheng
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| | - D I Meng
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| | - Yong Gu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guandong 510515, P.R. China
| |
Collapse
|
42
|
Yang MM, Huang W, Jiang DM. Tetramethylpyrazine protects Schwann cells from ischemia-like injury and increases cell survival in cold ischemic rat nerves. BRAZ J PHARM SCI 2015. [DOI: 10.1590/s1984-82502015000100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tetramethylpyrazine (TMP), a major active ingredient of Ligusticum wallichi Franchat extract (a Chinese herb), exhibits neuroprotective properties in ischemia. In this study, we assessed its protective effects on Schwann cells (SCs) by culturing them in the presence of oxygen glucose deprivation (OGD) conditions and measuring cell survival in cold ischemic rat nerves. In the OGD-induced ischemic injury model of SCs, we demonstrated that TMP treatment not only reduced OGD-induced cell viability losses, cell death, and apoptosis of SCs in a dose-dependent manner, and inhibited LDH release, but also suppressed OGD-induced downregulation of Bcl-2 and upregulation of Bax and caspase-3, as well as inhibited the consequent activation of caspase-3. In the cold ischemic nerve model, we found that prolonged cold ischemic exposure for four weeks was markedly associated with the absence of SCs, a decrease in cell viability, and apoptosis in preserved nerve segments incubated in University of Wisconsin solution (UWS) alone. However, TMP attenuated nerve segment damage by preserving SCs and antagonizing the decrease in nerve fiber viability and increase in TUNEL-positive cells in a dose-dependent manner. Collectively, our results indicate that TMP not only provides protective effects in an ischemia-like injury model of cultured rat SCs by regulating Bcl-2, Bax, and caspase-3, but also increases cell survival and suppresses apoptosis in the cold ischemic nerve model after prolonged ischemic exposure for four weeks. Therefore, TMP may be a novel and effective therapeutic strategy for preventing peripheral nervous system ischemic diseases and improving peripheral nerve storage.
Collapse
Affiliation(s)
- Ming-Ming Yang
- Chongqing Medical University, People's Republic of China
| | - Wei Huang
- Chongqing Medical University, People's Republic of China
| | | |
Collapse
|
43
|
Attenuation of renal ischemia/reperfusion injury by açaí extract preconditioning in a rat model. Life Sci 2015; 123:35-42. [DOI: 10.1016/j.lfs.2014.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/29/2014] [Accepted: 11/19/2014] [Indexed: 12/23/2022]
|
44
|
Ren Q, Zhang Y, Yang J, Wei L, Zhao L, Yang Q. Detection of renal brush border membrane enzymes for evaluation of renal injury in neonatal scleredema. Pak J Med Sci 2015; 31:65-9. [PMID: 25878616 PMCID: PMC4386159 DOI: 10.12669/pjms.311.5740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/12/2014] [Accepted: 09/28/2014] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To evaluate renal brush border membrane enzymes in urine as an indicator for renal injury in neonatal scleredema (NS). METHODS Sixty nine NS patients in our hospital were enrolled and divided into mild group and moderate/severe group. Patients were further randomly divided into therapy and control subgroups for 7 days ligustrazine administration. Urine samples were collected to detect renal brush border membrane enzymes (RBBME) by ELISA and β2-microglobulin (β2-MG) by radioimmunoassay (RIA). The results were compared with those of 30 normal neonates. Data were statistically analyzed using SPSS13.0 software. RESULTS Both RBBME and β2-MG were found to be higher in urine in NS patients than normal controls (P < 0.01). Level of RBBME increased with the severity of NS (P <0.05), while urinary β2-MG did not (P >0.05). After being treated with ligustrazine, a medicine for renal function recovery, both RBBME and β2-MG were similarly significantly decreased comparing to untreated groups (P < 0.05). 79.7% of NS patients showed abnormal RBBME while only 52.2% had an abnormal urinary β2-MG (χ (2)=11.65,P < 0.01). CONCLUSION RBBME was more sensitive than β2-MG in reflecting the renal injury in NS. Examination of RBBME effectively reflected the recovery of renal injury after treatment with ligustrazine.
Collapse
Affiliation(s)
- Qing Ren
- Qing Ren, MD, Department of Pediatrics, Liaocheng People’s Hospital, Liaocheng, Shandong252000, China
| | - Yongjun Zhang
- Yongjun Zhang, MD, Department of Pediatrics, Liaocheng People’s Hospital, Liaocheng, Shandong252000, China
| | - Jinying Yang
- Jinying Yang, MD, Center for Disease Control and Prevention of Liaocheng, Liaocheng, Shandong 252000, China
| | - Lixia Wei
- Lixia Wei, MD, Department of Pediatrics, Liaocheng People’s Hospital, Liaocheng, Shandong252000, China
| | - Lili Zhao
- Lili Zhao, MD, Department of Pediatrics, Liaocheng People’s Hospital, Liaocheng, Shandong252000, China
| | - Qiaozhi Yang
- Qiaozhi Yang, MD, Department of Pediatrics, Liaocheng People’s Hospital, Liaocheng, Shandong252000, China
| |
Collapse
|
45
|
Wang DJ, Tian H. Effect of Mailuoning injection on 8-iso-prostaglandin F2 alpha and superoxide dismutase in rabbits with extremity ischemia–reperfusion injury. J Surg Res 2014; 192:464-70. [DOI: 10.1016/j.jss.2014.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/20/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
|
46
|
Dokuyucu R, Gogebakan B, Yumrutas O, Bozgeyik I, Gokce H, Demir T. Expressions of TRPM6 and TRPM7 and histopathological evaluation of tissues in ischemia reperfusion performed rats. Ren Fail 2014; 36:932-6. [PMID: 24679001 DOI: 10.3109/0886022x.2014.900405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is very little work on the expression of TRPM6/7 in ischemia reperfusion models. In previous studies, after ischemia, reperfusion had been kept limited to 24 h, yet in our study, expressions of these channels were elucidated after its modification to 48 h to establish what kind of changes renal tissues undergo. For the current study, 20 Wistar albino rats were divided into two groups equally. Group I: control group, Group II = I/R group (60 min ischemia + 48 h reperfusion). For the mRNA analysis, right kidneys of I/R group was used as a reference in order to eliminate genetic differences. The left renal artery (I/R generated part) of I/R area was removed from all rats in the second group. Likewise, normal tissues of right renal artery were removed from all rats. Histopathologic scoring of the tissue samples were achieved semi-quantitatively according to normal tissue composition. Consequently, both TRPM6 and TRPM7 expression levels were decreased in all groups according to control groups, yet results were not counted as significant (p > 0.05). Additionally, correlation analysis confirmed these results. Also, I/R performed kidneys had more tissue damage compared to control group. To conclude, our study results suggest that TRPM6/7 expressions may be increased and after 48 h of reperfusion expression levels of these two stored to normal levels. At the same time, damages have occurred in renal tissues after ischemia. These damages were considered to be resulted from the oxidative effects as previously reported.
Collapse
Affiliation(s)
- Recep Dokuyucu
- Department of Physiology, Faculty of Medicine, Mustafa Kemal University , Hatay , Turkey
| | | | | | | | | | | |
Collapse
|
47
|
Li YW, Zhang Y, Zhang L, Li X, Yu JB, Zhang HT, Tan BB, Jiang LH, Wang YX, Liang Y, Zhang XS, Wang WS, Liu HG. Protective effect of tea polyphenols on renal ischemia/reperfusion injury via suppressing the activation of TLR4/NF-κB p65 signal pathway. Gene 2014; 542:46-51. [PMID: 24630969 DOI: 10.1016/j.gene.2014.03.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 01/02/2023]
Abstract
Tea polyphenols (TP) was investigated in rats for its protective effect on renal ischemia/reperfusion injury (RIRI). Rats were randomized into groups as follows: (I) sham group (n=10); (II) RIRI group (n=10); (III) RIRI+TP (100mg/kg) group (n=5); (IV) RIRI+TP (200mg/kg) group (n=5); (V) RIRI+TP+ Astragalus mongholicus aqueous extract (AMAE) (300 mg/kg+100mg/kg) group (n=5). For the IRI+TP groups, rats were orally given with tea polyphenols (100, 200 and 300 mg/kg body weight) once daily 10 days before induction of ischemia, followed by renal IRI. For the sham group and RIRI group, rats were orally given with equal volume of saline once daily 10 days before induction of ischemia, followed by renal IRI. Results showed that tea polyphenol pretreatment significantly suppressed ROS level and MDA release. On the other hand, in rats subjected to ischemia-reperfusion, the activities of endogenous antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) showed recovery, whereas the levels of urea nitrogen and serum creatinine were reduced by administration of tea polyphenols orally for 10 days prior to ischemia-reperfusion. Moreover, tea polyphenol pretreatment significantly decreased TLR4 and NF-κB p65 protein expression levels in RIRI rats. At the same time, tea polyphenol pretreatment attenuated the increased level of serum IL-1β, IL-6, ICAM-1 and TNF-α, and enhanced IL-10 production in RIRI rats. Furthermore, tea polyphenol pretreatment significantly decreased renal epithelial tubular cell apoptosis induced by renal ischemia/reperfusion, alleviating renal ischemia/reperfusion injury. These results cumulatively indicate that tea polyphenol pretreatment could suppress the TLR4/NF-κB p65 signaling pathway, protecting renal tubular epithelial cells against ischemia/reperfusion-induced apoptosis, which implies that antioxidants may be a potential and effective agent for prevention of the ischemic/reperfusion injury through the suppression extrinsic apoptotic signal pathway induced by TLR4/NF-κB p65 signal pathway. Moreover, supplement of AMAE can increased renal protection effect of TP.
Collapse
Affiliation(s)
- Yan-Wei Li
- Department of Nephrology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yan Zhang
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China.
| | - Ling Zhang
- Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Xu Li
- Tianjin institute of medical and pharmaceutical sciences, Tianjin 300000, China
| | - Jian-Bo Yu
- Department of Anesthesiology, Tianjin Nan Kai Hospital, Tianjin 300100, China
| | - Hong-Tao Zhang
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Bin-Bin Tan
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Lian-Hao Jiang
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Ya-Xin Wang
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Yu Liang
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Xiu-Shan Zhang
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Wen-Sheng Wang
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Hai-Gen Liu
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China
| |
Collapse
|
48
|
Chen H, Li G, Zhan P, Li H, Wang S, Liu X. Design, synthesis and biological evaluation of novel trimethylpyrazine-2-carbonyloxy-cinnamic acids as potent cardiovascular agents. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00022f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Wang YP, Li G, Ma LL, Zheng Y, Zhang SD, Zhang HX, Qiu M, Ma X. Penehyclidine hydrochloride ameliorates renal ischemia–reperfusion injury in rats. J Surg Res 2014; 186:390-7. [DOI: 10.1016/j.jss.2013.07.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/07/2013] [Accepted: 07/19/2013] [Indexed: 12/17/2022]
|
50
|
Li J, Yu J, Liu Y, Hu L, Yang B, Zhou X, Wang R, Liang Y. Expression of the Matrix Metalloproteinases and the Tissue Inhibitor of Metalloproteinase Factors are Affected by Tetramethylpyrazine Treatment in a Renal Interstitial Fibrosis Rat Model. J HARD TISSUE BIOL 2014. [DOI: 10.2485/jhtb.23.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|