1
|
Xu J, Li S, Wehbe A, Ji X, Yang Y, Yang Y, Qin L, Liu FY, Ding Y, Ren C. Abdominal Aortic Occlusion and the Inflammatory Effects in Heart and Brain. Mediators Inflamm 2023; 2023:2730841. [PMID: 38131062 PMCID: PMC10735730 DOI: 10.1155/2023/2730841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2023] Open
Abstract
Background Abdominal aortic occlusion (AAO) occurs frequently and causes ischemia/reperfusion (I/R) injury to distant organs. In this study, we aimed to investigate whether AAO induced I/R injury and subsequent damage in cardiac and neurologic tissue. We also aimed to investigate the how length of ischemic time in AAO influences reactive oxygen species (ROS) production and inflammatory marker levels in the heart, brain, and serum. Methods Sixty male C57BL/6 mice were used in this study. The mice were randomly divided into either sham group or AAO group. The AAO group was further subdivided into 1-4 hr groups of aortic occlusion times. The infrarenal abdominal aorta was clamped for 1-4 hr depending on the AAO group and was then reperfused for 24 hr after clamp removal. Serum, hippocampus, and left ventricle tissue samples were then subjected to biochemical and histopathological analyses. Results AAO-induced I/R injury had no effect on cell necrosis, cell apoptosis, or ROS production. However, serum and hippocampus levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) increased in AAO groups when compared to sham group. Superoxide dismutase and total antioxidant capacity decreased in the serum, hippocampus, and left ventricle. In the serum, AAO increased the level of inducible nitric oxide synthase (iNOS) and decreased the levels of anti-inflammatory factors (such as arginase-1), transforming growth factor- β1 (TGF-β1), interleukin 4 (IL-4), and interleukin 10 (IL-10). In the hippocampus, AAO increased the levels of tumor necrosis factor (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6), IL-4, and IL-6, and decreased the level of TGF-β1. In the left ventricle, AAO increased the level of iNOS and decreased the levels of TGF-β1, IL-4, and IL-10. Conclusions AAO did not induce cell necrosis or apoptosis in cardiac or neurologic tissue, but it can cause inflammation in the serum, brain, and heart.
Collapse
Affiliation(s)
- Jun Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Yong Yang
- School of Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Yu Yang
- School of Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Linhui Qin
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Feng-Yong Liu
- Department of Interventional Radiology, Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| |
Collapse
|
2
|
Pourova J, Dias P, Pour M, Bittner Fialová S, Czigle S, Nagy M, Tóth J, Balázs VL, Horváth A, Csikós E, Farkas Á, Horváth G, Mladěnka P. Proposed mechanisms of action of herbal drugs and their biologically active constituents in the treatment of coughs: an overview. PeerJ 2023; 11:e16096. [PMID: 37901462 PMCID: PMC10607228 DOI: 10.7717/peerj.16096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/24/2023] [Indexed: 10/31/2023] Open
Abstract
Various medicinal plants find their use in cough treatment, based on traditions and long-term experience. Pharmacological principles of their action, however, are much less known. Herbal drugs usually contain a mixture of potentially active compounds, which can manifest diverse effects. Expectorant or antitussive effects, which can be accompanied by others, such as anti-inflammatory or antibacterial, are probably the most important in the treatment of coughs. The aim of this review is to summarize the current state of knowledge of the effects of medicinal plants or their constituents on cough, based on reliable pharmacological studies. First, a comprehensive description of each effect is provided in order to explain the possible mechanism of action in detail. Next, the results related to individual plants and substances are summarized and critically discussed based on pharmacological in vivo and in vitro investigation.
Collapse
Affiliation(s)
- Jana Pourova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| | - Patricia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| | - Silvia Bittner Fialová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Jaroslav Tóth
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | | | - Adrienn Horváth
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Eszter Csikós
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Ágnes Farkas
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| |
Collapse
|
3
|
Murphy EJ, Rezoagli E, Major I, Rowan NJ, Laffey JG. β-Glucan Metabolic and Immunomodulatory Properties and Potential for Clinical Application. J Fungi (Basel) 2020; 6:E356. [PMID: 33322069 PMCID: PMC7770584 DOI: 10.3390/jof6040356] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
β-glucans are complex polysaccharides that are found in several plants and foods, including mushrooms. β-glucans display an array of potentially therapeutic properties. β-glucans have metabolic and gastro-intestinal effects, modulating the gut microbiome, altering lipid and glucose metabolism, reducing cholesterol, leading to their investigation as potential therapies for metabolic syndrome, obesity and diet regulation, gastrointestinal conditions such as irritable bowel, and to reduce cardiovascular and diabetes risk. β-glucans also have immune-modulating effects, leading to their investigation as adjuvant agents for cancers (solid and haematological malignancies), for immune-mediated conditions (e.g., allergic rhinitis, respiratory infections), and to enhance wound healing. The therapeutic potential of β-glucans is evidenced by the fact that two glucan isolates were licensed as drugs in Japan as immune-adjuvant therapy for cancer in 1980. Significant challenges exist to further clinical testing and translation of β-glucans. The diverse range of conditions for which β-glucans are in clinical testing underlines the incomplete understanding of the diverse mechanisms of action of β-glucans, a key knowledge gap. Furthermore, important differences appear to exist in the effects of apparently similar β-glucan preparations, which may be due to differences in sources and extraction procedures, another poorly understood issue. This review will describe the biology, potential mechanisms of action and key therapeutic targets being investigated in clinical trials of β-glucans and identify and discuss the key challenges to successful translation of this intriguing potential therapeutic.
Collapse
Affiliation(s)
- Emma J. Murphy
- Bioscience Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (E.J.M.); (E.R.); (N.J.R.)
| | - Emanuele Rezoagli
- Bioscience Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (E.J.M.); (E.R.); (N.J.R.)
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, H91 CF50 Galway, Ireland
- Anaesthesia and Intensive Care Medicine, University Hospital Galway, H91 YR71 Galway, Ireland
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Ian Major
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland;
| | - Neil J. Rowan
- Bioscience Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (E.J.M.); (E.R.); (N.J.R.)
| | - John G. Laffey
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, H91 CF50 Galway, Ireland
- Anaesthesia and Intensive Care Medicine, University Hospital Galway, H91 YR71 Galway, Ireland
| |
Collapse
|
4
|
Kaya K, Ciftci O, Aydın M, Cetin A, Basak N. Favourable effect of β-glucan treatment against cisplatin-induced reproductive system damage in male rats. Andrologia 2019; 51:e13342. [PMID: 31274209 DOI: 10.1111/and.13342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to investigate the potential beneficial effects of β-glucan treatment against oxidative, histological and spermatological damage caused by cisplatin on the male reproductive system. Twenty-eight Sprague Dawley male rats were used in the study. The rats were randomly divided into four equal-sized groups: a control group, cisplatin group (7 mg/kg in a single-dose cisplatin administered intraperitoneally), β-glucan group (β-glucan given at a dose of 50 mg kg-1 d-1 for 14 day) and a cisplatin plus β-glucan group (cisplatin and β-glucan administered together at the same dose). Cisplatin administration induced an increase in the level of thiobarbituric acid-reactive substances, a lipid peroxidation indicator. It induced a decrease in enzymatic (superoxide dismutase, catalase and glutathione peroxidase) activities and nonenzymatic (reduced glutathione) antioxidant levels. In addition, cisplatin caused both histological and spermatological damage, as shown by a decrease in sperm motility and epididymal sperm concentrations and an increase in abnormal sperm rates. The β-glucan treatment improved cisplatin-induced oxidative, histological and spermatological damage. This study revealed that β-glucan treatment provided prevention against male reproductive system damage caused by cisplatin. These preventative effects were likely due to its antioxidant properties.
Collapse
Affiliation(s)
- Kürşat Kaya
- Department of Biochemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Osman Ciftci
- Department of Medicinal Pharmacology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Muhterem Aydın
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Aslı Cetin
- Department of Histology and Embryology, Faculty of Medicine, Inönü University, Malatya, Turkey
| | - Neşe Basak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Inönü University, Malatya, Turkey
| |
Collapse
|
5
|
Protective Effect of Thymosin β4 against Abdominal Aortic Ischemia-Reperfusion-Induced Acute Lung Injury in Rats. ACTA ACUST UNITED AC 2019; 55:medicina55050187. [PMID: 31121838 PMCID: PMC6572620 DOI: 10.3390/medicina55050187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/25/2019] [Accepted: 05/17/2019] [Indexed: 12/29/2022]
Abstract
Background and objectives: Ischemia-reperfusion (IR) caused by infrarenal abdominal aorta cross-clamping is an important factor in the development of ischemia-reperfusion injury in various distant organs. Materials and Methods: We investigated potential antioxidant/anti-inflammatory effects of thymosin beta 4 (Tβ4) in a rat model of abdominal aortic surgery-induced IR. Tβ4 (10 mg/kg, intravenous (i.v.)) was administered to rats with IR (90-min ischemia, 180-min reperfusion) at two different periods. One group received Tβ4 1 h before ischemia, and the other received 15 min before the reperfusion period. Results: Results were compared to control and non-Tβ4-treated rats with IR. Serum, bronchoalveolar lavage fluid and lung tissue levels of oxidant parameters were higher, while antioxidant levels were lower in the IR group compared to control. IR also increased inflammatory cytokine levels. Tβ4 reverted these parameters in both Tβ4-treated groups compared to the untreated IR group. Conclusions: Since there is no statistical difference between the prescribed results of both Tβ4-treated groups, our study demonstrates that Tβ4 reduced lung oxidative stress and inflammation following IR and prevented lung tissue injury regardless of timing of administration.
Collapse
|
6
|
Kaya K, Çiftçi O, Öztanır MN, Taşlıdere E, Türkmen NB. Beta-glucan attenuates cerebral ischemia/reperfusion-induced neuronal injury in a C57BL/J6 mouse model. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000218312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
7
|
Desamero MJ, Kakuta S, Chambers JK, Uchida K, Hachimura S, Takamoto M, Nakayama J, Nakayama H, Kyuwa S. Orally administered brown seaweed-derived β-glucan effectively restrained development of gastric dysplasia in A4gnt KO mice that spontaneously develop gastric adenocarcinoma. Int Immunopharmacol 2018; 60:211-220. [PMID: 29763881 DOI: 10.1016/j.intimp.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/22/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
β-Glucan refers to a heterogeneous group of chemically defined storage polysaccharides containing β-(1,3)-d-linked glucose polymers with branches connected by either β-(1,4) or β-(1,6) glycosidic linkage. To date, an extensive amount of scientific evidence supports their multifunctional biological activities, but their potential involvement in the progression of premalignant lesions remains to be clarified. A4gnt KO mice that lack α1,4-N-acetylglucosamine-capped O-glycans in gastric gland mucin are a unique animal model for gastric cancer because the mutant mice spontaneously develop gastric cancer through hyperplasia-dysplasia-adenocarcinoma sequence. In particular, A4gnt KO mice show gastric dysplasia during 10-20 weeks of age. Here we investigated the putative gastro-protective activity of brown seaweed-derived β-glucan (Laminaran) against development of gastric dysplasia, precancerous lesion for gastric cancer in A4gnt KO mice. The mutant mice at 12 weeks of age were randomly assigned into three treatment groups namely, wildtype control + distilled water (normal control), A4gnt KO mice + distilled water (untreated control), and A4gnt KO mice + 100 mg/kg Laminaran. After 3 weeks, the stomach was removed and examined for morphology and gene expression patterns. In contrast to the untreated control group, administration of Laminaran substantially attenuated gastric dysplasia development and counterbalanced the increased induction in cell proliferation and angiogenesis. Furthermore, Laminaran treatment effectively overcame the A4gnt KO-induced alteration in the gene expression profile of selected cytokines as revealed by real-time PCR analysis. Collectively, our present findings indicate that β-glucan can potentially restrain the development of gastric dysplasia to mediate their tissue-preserving activity.
Collapse
Affiliation(s)
- Mark Joseph Desamero
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - James Kenn Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaya Takamoto
- Department of Infection and Host Defense, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeru Kyuwa
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Suchecka D, Błaszczyk K, Harasym J, Gudej S, Wilczak J, Gromadzka-Ostrowska J. Impact of purified oat 1-3,1-4-β-d-glucan of different molecular weight on alleviation of inflammation parameters during gastritis. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
9
|
The effects of fluoxetine on circulating oxidative damage parameters in rats exposed to aortic ischemia–reperfusion. Eur J Pharmacol 2015; 749:56-61. [DOI: 10.1016/j.ejphar.2015.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 12/19/2014] [Accepted: 01/05/2015] [Indexed: 11/23/2022]
|
10
|
Guner I, Yaman MO, Aksu U, Uzun D, Erman H, Inceli M, Gelisgen R, Yelmen N, Uzun H, Sahin G. The effect of fluoxetine on ischemia–reperfusion after aortic surgery in a rat model. J Surg Res 2014; 189:96-105. [DOI: 10.1016/j.jss.2014.02.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/22/2014] [Accepted: 02/19/2014] [Indexed: 01/07/2023]
|
11
|
Yenidogan E, Akgul GG, Gulcelik MA, Dinc S, Colakoglu MK, Kayaoglu HA. Effect of β-glucan on drain fluid and amount of drainage following modified radical mastectomy. Adv Ther 2014; 31:130-9. [PMID: 24421054 DOI: 10.1007/s12325-014-0091-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Indexed: 11/29/2022]
Abstract
INTRODUCTION To reduce the seroma formation following mastectomy and axillary dissection, many different techniques and drugs have been investigated. The aim of this study is to evaluate the effects of oral β-glucan on drain fluid and efficacy of daily drainage and drain removal day in mastectomy patients. METHODS One hundred and thirty breast cancer patients of Ankara Oncology Training and Research Hospital were divided into 2 groups by consecutive randomization (n = 65 each). β-glucan 10 mg capsules were administered to Group 1 twice a day for 10 days. Group 2 took placebos in the same manner. Age, menarche age, menopause, parity, history of oral contraceptives, comorbidities, postoperative daily drainage volumes and drain removal days were recorded and compared. Seroma samples during the first and second day of drainage were taken for analysis of Interleukin-6 (IL-6) and Tumor Necrosis Factor (TNF-α). RESULTS There was no difference between groups in terms of age, menarche age, menopause period, parity, oral contraceptive use and comorbidities. Group 1 showed significantly lower daily drainage volumes between days 2 and 8. Mean drain removal day was 7.16 ± 1.72 in Group 1 and 8.59 ± 2.27 in Group 2. The difference was significant (p < 0.001). TNF-α and IL-6 levels on days 1 and 2 in Group 1 were significantly lower (p < 0.001). In addition, β-glucan significantly shortened the number of days required for the drain removal in patients who have comorbidities (p = 0.018). The earliest removal was in patients without comorbidity and who received β-glucan (p = 0.002). CONCLUSION β-glucan decreased drain discharges after mastectomy. The drains were removed earlier in β-glucan administered patients.
Collapse
Affiliation(s)
- Erdinc Yenidogan
- Department of General Surgery, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey,
| | | | | | | | | | | |
Collapse
|
12
|
Seker A, Deger KC, Bostanci EB, Ozer I, Dalgic T, Bilgihan A, Akmansu M, Ekinci O, Ercin U, Akoglu M. Effects of β-glucan on colon anastomotic healing in rats given preoperative irradiation. J INVEST SURG 2013; 27:155-62. [PMID: 24354442 DOI: 10.3109/08941939.2013.865820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Radiation therapy is an essential therapeutic modality in the management of a wide variety of tumors. We aimed to investigate the short-term effects of pelvic irradiation on the healing of colon anastomoses and to determine the potential protective effects of β-glucan in this situation. MATERIAL AND METHODS Sixty Wistar albino rats were randomized into three experimental groups: a control group (n = 20), an irradiation (IR) group (n = 20), and an irradiation+β-glucan (IR+β-glucan) group (n = 20). Only segmental colonic resection and anastomosis were performed on the control group. The IR group underwent the same surgical procedure as the control group 5 days after pelvic irradiation. In the IR+β-glucan group, the same procedure was applied as in the IR group after β-glucan administration. The groups were subdivided into subgroups according to the date of euthanasia (third [n = 10] or seventh [n = 10] postoperative [PO] day), and anastomotic colonic segments were resected to evaluate bursting pressures and biochemical and histopathological parameters. RESULTS Bursting pressure values were significantly lower in the IR group (p < .001). Malondialdehyde (MDA) levels were significantly higher in the IR group, whereas β-glucan significantly decreased MDA levels on the third PO day (p < .001). Granulation tissue formation scores were significantly lower in the IR+β-glucan group compared with the control group and the IR group (p < .001). CONCLUSIONS The results of this study indicate that irradiation has negative effects on the early healing of colon anastomoses. The administration of β-glucan ameliorates these unfavorable effects by altering bursting pressures and biochemical parameters.
Collapse
Affiliation(s)
- Ahmet Seker
- 1Department of General Surgery, Faculty of Medicine, Harran University , Sanlıurfa , Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Du B, Bian Z, Xu B. Skin Health Promotion Effects of Natural Beta-Glucan Derived from Cereals and Microorganisms: A Review. Phytother Res 2013; 28:159-66. [DOI: 10.1002/ptr.4963] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/15/2013] [Accepted: 02/01/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Bin Du
- Analysis and Testing Center; Hebei Normal University of Science and Technology; Qinhuangdao Hebei 066600 China
- School of Chinese Medicine; Hong Kong Baptist University; Hong Kong China
| | - Zhaoxiang Bian
- School of Chinese Medicine; Hong Kong Baptist University; Hong Kong China
| | - Baojun Xu
- Food Science and Technology Program; Beijing Normal University-Hong Kong Baptist University United International College; Zhuhai Guangdong 519085 China
| |
Collapse
|