1
|
Hassani B, Attar Z, Firouzabadi N. The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: foes versus allies. Cancer Cell Int 2023; 23:254. [PMID: 37891636 PMCID: PMC10604988 DOI: 10.1186/s12935-023-03080-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS), is an old system with new fundamental roles in cancer biology which influences cell growth, migration, death, and metastasis. RAAS signaling enhances cell proliferation in malignancy directly and indirectly by affecting tumor cells and modulating angiogenesis. Cancer development may be influenced by the balance between the ACE/Ang II/AT1R and the ACE2/Ang 1-7/Mas receptor pathways. The interactions between Ang II/AT1R and Ang I/AT2R as well as Ang1-7/Mas and alamandine/MrgD receptors in the RAAS pathway can significantly impact the development of cancer. Ang I/AT2R, Ang1-7/Mas, and alamandine/MrgD interactions can have anticancer effects while Ang II/AT1R interactions can be involved in the development of cancer. Evidence suggests that inhibitors of the RAAS, which are conventionally used to treat cardiovascular diseases, may be beneficial in cancer therapies.Herein, we aim to provide a thorough description of the elements of RAAS and their molecular play in cancer. Alongside this, the role of RAAS components in sex-dependent cancers as well as GI cancers will be discussed with the hope of enlightening new venues for adjuvant cancer treatment.
Collapse
Affiliation(s)
- Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Attar
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. Int J Mol Sci 2020. [DOI: 10.3390/ijms21103494
expr 969553959 + 931886332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Colorectal cancer (CRC), classified as the third most prevalent cancer worldwide, remains to be a clinical and research challenge. It is estimated that ~50% of CRC patients die from distant metastases, with treatment of this complication still posing significant difficulties. While liver metastasis (LM) cascade is known in the literature, its mechanisms are still unclear and remain studied in different research models. A connection is suggested between nervous system dysfunctions and a range of Neurotransmitters (Nts) (including Neuropeptides, NPs), Neurotrophins (Ntt) and their receptors (Rs) in CRC liver metastasis development. Studies on the role of NP/NP-Rs in the progression and metastasis of CRC, show the complexity of brain–tumor interactions, caused by their different forms of release to the extracellular environment (endocrine, autocrine, paracrine and neurocrine). Many stages of LM are connected to the activity of pro-inflammatory, e.g., Corticotropin-releasing Hormone Receptor 1 (CRHR1), Neuropeptide Y (NPY) and Neurotensin (NT), anti-inflammatory, e.g., Calcitonin Gene-related Peptide (CGRP), CRHR2 and Vasoactive Intestinal Polypeptide (VIP) or dual role neuropeptides, e.g., Substance P (SP). The regulation of the local immunological profile (e.g., CRH/CRHRs), dysfunctions of enteroprotective role of NPs on epithelial cells (e.g., NT/NT-R), as well as structural-functional changes in enteric nervous system innervation of the tumor are also important. More research is needed to understand the exact mechanisms of communication between the neurons and tumor cells. The knowledge on the mechanisms regulating tumor growth and different stages of metastasis, as well as effects of the action of a numerous group of Nts/NPs/Ntt as growth factors, have implications for future therapeutic strategies. To obtain the best treatment outcomes, it is important to use signaling pathways common for many NPs, as well to develop a range of broad-spectrum antagonists. This review aims to summarize the current knowledge on the importance of neuroactive molecules in the promotion of the invasion-metastasis cascade in CRC, as well as the improvements of clinical management of CRC liver metastasis.
Collapse
|
3
|
The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. Int J Mol Sci 2020; 21:ijms21103494. [PMID: 32429087 PMCID: PMC7279011 DOI: 10.3390/ijms21103494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC), classified as the third most prevalent cancer worldwide, remains to be a clinical and research challenge. It is estimated that ~50% of CRC patients die from distant metastases, with treatment of this complication still posing significant difficulties. While liver metastasis (LM) cascade is known in the literature, its mechanisms are still unclear and remain studied in different research models. A connection is suggested between nervous system dysfunctions and a range of Neurotransmitters (Nts) (including Neuropeptides, NPs), Neurotrophins (Ntt) and their receptors (Rs) in CRC liver metastasis development. Studies on the role of NP/NP-Rs in the progression and metastasis of CRC, show the complexity of brain–tumor interactions, caused by their different forms of release to the extracellular environment (endocrine, autocrine, paracrine and neurocrine). Many stages of LM are connected to the activity of pro-inflammatory, e.g., Corticotropin-releasing Hormone Receptor 1 (CRHR1), Neuropeptide Y (NPY) and Neurotensin (NT), anti-inflammatory, e.g., Calcitonin Gene-related Peptide (CGRP), CRHR2 and Vasoactive Intestinal Polypeptide (VIP) or dual role neuropeptides, e.g., Substance P (SP). The regulation of the local immunological profile (e.g., CRH/CRHRs), dysfunctions of enteroprotective role of NPs on epithelial cells (e.g., NT/NT-R), as well as structural-functional changes in enteric nervous system innervation of the tumor are also important. More research is needed to understand the exact mechanisms of communication between the neurons and tumor cells. The knowledge on the mechanisms regulating tumor growth and different stages of metastasis, as well as effects of the action of a numerous group of Nts/NPs/Ntt as growth factors, have implications for future therapeutic strategies. To obtain the best treatment outcomes, it is important to use signaling pathways common for many NPs, as well to develop a range of broad-spectrum antagonists. This review aims to summarize the current knowledge on the importance of neuroactive molecules in the promotion of the invasion-metastasis cascade in CRC, as well as the improvements of clinical management of CRC liver metastasis.
Collapse
|
4
|
de Miranda AS, Simões e Silva AC. Liver. ANGIOTENSIN-(1-7) 2019. [PMCID: PMC7121918 DOI: 10.1007/978-3-030-22696-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery that renin–angiotensin system (RAS) components are locally expressed in the liver tissue, pointed out to a role for this system in the pathogenesis of hepatic fibrosis and cirrhosis. The RAS counter-regulatory axis composed by the angiotensin converting enzyme 2 (ACE2), angiotensin-(1-7) [Ang-(1-7)] and Mas receptor mediates pro-inflammatory, pro-thrombotic, and pro-fibrotic processes, frequently opposing the classical RAS arm (ACE-Ang II-AT1 receptor) actions. Therefore, the balance between both RAS axes most likely affects the clinical and histopathological expression of liver diseases. It is worth noticing that liver diseases are major causes of morbidity and mortality worldwide. Without proper treatment, all types of chronic hepatitis will progress to end-stage liver diseases, including cirrhosis, liver failure, and hepatocellular carcinoma, which ultimately lead to death. In this context, to better comprehend the role of RAS components in liver failure might pave the way for the search of potential predictive biomarkers as well as the development of novel therapeutic approaches. Valuable data have been generated from preclinical and clinical studies. Herein, we summarize the current evidence, mainly focusing in the ACE2-Ang-(1-7)-Mas receptor arm, regarding the role of RAS in liver diseases. The therapeutic potential of the modulation of RAS molecules in liver diseases is also discussed.
Collapse
|
5
|
Álvarez-Mercado AI, Bujaldon E, Gracia-Sancho J, Peralta C. The Role of Adipokines in Surgical Procedures Requiring Both Liver Regeneration and Vascular Occlusion. Int J Mol Sci 2018; 19:ijms19113395. [PMID: 30380727 PMCID: PMC6274984 DOI: 10.3390/ijms19113395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Liver regeneration is a perfectly calibrated mechanism crucial to increase mass recovery of small size grafts from living donor liver transplantation, as well as in other surgical procedures including hepatic resections and liver transplantation from cadaveric donors. Regeneration involves multiple events and pathways in which several adipokines contribute to their orchestration and drive hepatocytes to proliferate. In addition, ischemia-reperfusion injury is a critical factor in hepatic resection and liver transplantation associated with liver failure or graft dysfunction post-surgery. This review aims to summarize the existing knowledge in the role of adipokines in surgical procedures requiring both liver regeneration and vascular occlusion, which increases ischemia-reperfusion injury and regenerative failure. We expose and discuss results in small-for-size liver transplantation and hepatic resections from animal studies focused on the modulation of the main adipokines associated with liver diseases and/or regeneration published in the last five years and analyze future perspectives and their applicability as potential targets to decrease ischemia-reperfusion injury and improve regeneration highlighting marginal states such as steatosis. In our view, adipokines means a promising approach to translate to the bedside to improve the recovery of patients subjected to partial hepatectomy and to increase the availability of organs for transplantation.
Collapse
Affiliation(s)
- Ana Isabel Álvarez-Mercado
- Experimental Liver Surgery and Liver Transplantation, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Esther Bujaldon
- Experimental Liver Surgery and Liver Transplantation, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas (CIBEREHD), 28029 Madrid, Spain.
- Liver Vascular Biology Research Group, IDIBAPS, 08036 Barcelona, Spain.
| | - Carmen Peralta
- Experimental Liver Surgery and Liver Transplantation, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas (CIBEREHD), 28029 Madrid, Spain.
- Facultad de Medicina, Universidad Internacional de Cataluña, 08017 Barcelona, Spain.
| |
Collapse
|
6
|
Shimizu Y, Amano H, Ito Y, Betto T, Yamane S, Inoue T, Nishizawa N, Matsui Y, Kamata M, Nakamura M, Kitasato H, Koizumi W, Majima M. Angiotensin II subtype 1a receptor signaling in resident hepatic macrophages induces liver metastasis formation. Cancer Sci 2017; 108:1757-1768. [PMID: 28660748 PMCID: PMC5581524 DOI: 10.1111/cas.13306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/20/2017] [Accepted: 06/25/2017] [Indexed: 01/11/2023] Open
Abstract
Liver metastases from colorectal cancer (CRC) are a clinically significant problem. The renin-angiotensin system is involved in tumor growth and metastases. This study was designed to evaluate the role of angiotensin II subtype receptor 1a (AT1a) in the formation of liver metastasis in CRC. A model of liver metastasis was developed by intrasplenic injection of mouse colon cancer (CMT-93) into AT1a knockout mice (AT1aKO) and wild-type (C57BL/6) mice (WT). Compared with WT mice, the liver weight and liver metastatic rate were significantly lower in AT1aKO. The mRNA levels of CD31, transforming growth factor- β1 (TGF-β1), and F4/80 were suppressed in AT1aKO compared with WT. Double immunofluorescence analysis showed that the number of accumulated F4/80+ cells expressing TGF-β1 in metastatic areas was higher in WT than in AT1aKO. The AT1aKO bone marrow (BM) (AT1aKO-BM)→WT showed suppressed formation of liver metastasis compared with WT-BM→WT. However, the formation of metastasis was further suppressed in WT-BM→AT1aKO compared with AT1aKO-BM→WT. In addition, accumulated F4/80+ cells in the liver metastasis were not BM-derived F4/80+ cells, but mainly resident hepatic F4/80+ cells, and these resident hepatic F4/80+ cells were positive for TGF-β1. Angiotensin II enhanced TGF-β1 expression in Kupffer cells. Treatment of WT with clodronate liposomes suppressed liver metastasis by diminishing TGF-β1+ F4/80+ cells accumulation. The formation of liver metastasis correlated with collagen deposition in the metastatic area, which was dependent on AT1a signaling. These results suggested that resident hepatic macrophages induced liver metastasis formation by induction of TGF-β1 through AT1a signaling.
Collapse
Affiliation(s)
- Yuki Shimizu
- Department of PharmacologyKitasato University School of MedicineKanagawaJapan
- Department of GastroenteologyKitasato University School of MedicineKanagawaJapan
| | - Hideki Amano
- Department of PharmacologyKitasato University School of MedicineKanagawaJapan
| | - Yoshiya Ito
- Department of SurgeryKitasato University School of MedicineKanagawaJapan
| | - Tomohiro Betto
- Department of PharmacologyKitasato University School of MedicineKanagawaJapan
- Department of GastroenteologyKitasato University School of MedicineKanagawaJapan
| | - Sakiko Yamane
- Department of PharmacologyKitasato University School of MedicineKanagawaJapan
- Department of GastroenteologyKitasato University School of MedicineKanagawaJapan
| | - Tomoyoshi Inoue
- Department of PharmacologyKitasato University School of MedicineKanagawaJapan
- Department of GastroenteologyKitasato University School of MedicineKanagawaJapan
| | - Nobuyuki Nishizawa
- Department of PharmacologyKitasato University School of MedicineKanagawaJapan
- Department of SurgeryKitasato University School of MedicineKanagawaJapan
| | - Yoshio Matsui
- Department of PharmacologyKitasato University School of MedicineKanagawaJapan
| | - Mariko Kamata
- Department of NephrologyKitasato University School of MedicineKanagawaJapan
| | - Masaki Nakamura
- Department of MicrobiologyKitasato University School of Allied Health SciencesKanagawaJapan
| | - Hidero Kitasato
- Department of MicrobiologyKitasato University School of Allied Health SciencesKanagawaJapan
| | - Wasaburo Koizumi
- Department of GastroenteologyKitasato University School of MedicineKanagawaJapan
| | - Masataka Majima
- Department of PharmacologyKitasato University School of MedicineKanagawaJapan
| |
Collapse
|
7
|
Xu XP, He HL, Hu SL, Han JB, Huang LL, Xu JY, Xie JF, Liu AR, Yang Y, Qiu HB. Ang II-AT2R increases mesenchymal stem cell migration by signaling through the FAK and RhoA/Cdc42 pathways in vitro. Stem Cell Res Ther 2017; 8:164. [PMID: 28697804 PMCID: PMC5506621 DOI: 10.1186/s13287-017-0617-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/06/2017] [Accepted: 06/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) migrate via the bloodstream to sites of injury and are possibly attracted by inflammatory factors. As a proinflammatory mediator, angiotensin II (Ang II) reportedly enhances the migration of various cell types by signaling via the Ang II receptor in vitro. However, few studies have focused on the effects of Ang II on MSC migration and the underlying mechanisms. Methods Human bone marrow MSCs migration was measured using wound healing and Boyden chamber migration assays after treatments with different concentrations of Ang II, an AT1R antagonist (Losartan), and/or an AT2R antagonist (PD-123319). To exclude the effect of proliferation on MSC migration, we measured MSC proliferation after stimulation with the same concentration of Ang II. Additionally, we employed the focal adhesion kinase (FAK) inhibitor PF-573228, RhoA inhibitor C3 transferase, Rac1 inhibitor NSC23766, or Cdc42 inhibitor ML141 to investigate the role of cell adhesion proteins and the Rho-GTPase protein family (RhoA, Rac1, and Cdc42) in Ang II-mediated MSC migration. Cell adhesion proteins (FAK, Talin, and Vinculin) were detected by western blot analysis. The Rho-GTPase family protein activities were assessed by G-LISA and F-actin levels, which reflect actin cytoskeletal organization, were detected by using immunofluorescence. Results Human bone marrow MSCs constitutively expressed AT1R and AT2R. Additionally, Ang II increased MSC migration in an AT2R-dependent manner. Notably, Ang II-enhanced migration was not mediated by Ang II-mediated cell proliferation. Interestingly, Ang II-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased Talin and Vinculin expression. Moreover, RhoA and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. Furthermore, FAK, Talin, and Vinculin activation and F-actin reorganization in response to Ang II were prevented by PD-123319 but not Losartan, indicating that FAK activation and F-actin reorganization were downstream of AT2R. Conclusions These data indicate that Ang II-AT2R regulates human bone marrow MSC migration by signaling through the FAK and RhoA/Cdc42 pathways. This study provides insights into the mechanisms by which MSCs home to injury sites and will enable the rational design of targeted therapies to improve MSC engraftment.
Collapse
Affiliation(s)
- Xiu-Ping Xu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Hong-Li He
- Department of Critical Care Medicine, Affiliated Hospital of University of Electronic Science and Technology of China & Sichuan Provincial People's Hospital, Chengdu, 610072, People's Republic of China
| | - Shu-Ling Hu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ji-Bin Han
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Li-Li Huang
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jing-Yuan Xu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jian-Feng Xie
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ai-Ran Liu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yi Yang
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Hai-Bo Qiu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
8
|
Simões e Silva AC, Miranda AS, Rocha NP, Teixeira AL. Renin angiotensin system in liver diseases: Friend or foe? World J Gastroenterol 2017; 23:3396-3406. [PMID: 28596676 PMCID: PMC5442076 DOI: 10.3748/wjg.v23.i19.3396] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/17/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
In the last three decades, the understanding of the renin angiotensin system (RAS) has been changed by the discoveries of functional local systems, novel biologically active peptides, additional specific receptors, alternative pathways of angiotensin (Ang) II generation, and new roles for enzymes and precursor components other than those in Ang II synthesis. In this regard, the discovery that Ang-(1-7) opposes the pressor, proliferative, pro-fibrotic, and pro-inflammatory effects mediated by Ang II has contributed to the realization that the RAS is composed of two axes. The first axis consists of the angiotensin-converting enzyme (ACE), with Ang II as the end product, and the angiotensin type 1 (AT1) receptor as the main effector mediating the biological actions of Ang II. The second axis results from ACE2-mediated hydrolysis of Ang II, leading to the production of Ang-(1-7), with the Mas receptor as the main effector conveying the vasodilatory, anti-proliferative, anti-fibrotic, and anti-inflammatory effects of Ang-(1-7). Experimental and clinical studies have shown that both axes of the RAS may take part in the pathogenesis of liver diseases. In this manuscript, we summarize the current evidence regarding the role of RAS in hepatic cirrhosis and its complications, including hemodynamic changes and hepatorenal syndrome. The therapeutic potential of the modulation of RAS molecules in liver diseases is also discussed.
Collapse
|
9
|
Ambreen A, Jahan S, Malik S. Effect of angiotensin-converting enzyme inhibitor, lisinopril on morphological and biochemical aspects of fibrotic liver regeneration. Saudi J Gastroenterol 2016; 22:428-434. [PMID: 27976638 PMCID: PMC5184743 DOI: 10.4103/1319-3767.195559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/AIMS Hepatic fibrosis results in defective liver regeneration following partial hepatectomy. Angiotensin converting enzyme (ACE) inhibitors can enhance liver regeneration and are also involved in the reduction of hepatic fibrosis. The present study has been conducted to evaluate the potential effect of an ACE inhibitor, lisinopril, on the morphological and biochemical aspects of fibrotic liver regeneration. MATERIALS AND METHODS Eight-week old female Sprague Dawley rats were made fibrotic by intragastric carbon tetrachloride treatment. Rats were given saline or lisinopril (1 mg/kg) orally for 1 week and were subjected to sham surgery or two-third partial hepatectomy. Liver regenerative and functional capacities were determined 48 hours post surgery. RESULTS Lisinopril administration did not affect the regeneration rate, proliferation cell nuclear antigen count, and hepatocellular area of fibrotic livers following partial hepatectomy. No statistically significant difference between treated and control rats regarding mitotic count, hepatocyte nuclear area, and binuclear hepatocyte frequency was observed. Serum biochemical analysis showed that lisinopril non-significantly decreased the partial hepatectomy induced elevated levels of alanine aminotransferase, aspartate transaminase, and alkaline phosphatase whereas lactate dehydrogenase and total bilirubin levels were significantly reduced. No marked reduction in hepatic collagen content and alpha smooth actin positive cells was observed by lisinopril treatment. CONCLUSION ACE inhibitor lisinopril did not produce major histomorphological alterations in regenerating fibrotic liver following partial hepatectomy, however, it may improve its functional capability.
Collapse
Affiliation(s)
- Aysha Ambreen
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan,Address for correspondence: Ms. Aysha Ambreen, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. E-mail:
| | - Sarwat Jahan
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Satwat Malik
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
10
|
Arioka Y, Ito H, Ando T, Ogiso H, Hirata A, Hara A, Seishima M. Pre-stimulated Mice with Carbon Tetrachloride Accelerate Early Liver Regeneration After Partial Hepatectomy. Dig Dis Sci 2015; 60:1699-706. [PMID: 25630420 DOI: 10.1007/s10620-015-3536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/09/2015] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM The liver has a high capacity of its regeneration. Most hepatic cells are quiescent unless otherwise stimulated such as their injury or ablation. A previous study suggest that pre-activated hepatic cells have a positive effect on their regeneration. In this study, we examined whether the pre-activated hepatic cells for regeneration accelerate the subsequent liver regeneration. METHODS We administered a single injection of carbon tetrachloride (CCl4) to mice 7 days before partial hepatectomy (PHx). Liver weight/body weight ratio and several parameters for cell proliferation such as mitotic index and the number of Ki67 positive cells in the liver were examined after PHx as indexes of liver regeneration. RESULTS Compared to control mice, those pre-stimulated with CCl4 showed earlier liver regeneration 48 h after PHx. Regardless of their accelerated regeneration, pre-stimulated mice showed less cell proliferation than did control mice during liver regeneration. Hepatic fibrosis was not observed in both control and CCl4-pretreated mice after PHx. Mice pre-treated with CCl4 showed the higher matrix metalloproteinase 9 (MMP9) expression than those pre-treated with olive oil. When matrix metalloproteinase 9 (MMP9) activity was inhibited, the pre-stimulated mice did not demonstrate accelerated liver regeneration and they returned to the original state for cell proliferations after PHx. CONCLUSIONS Pre-activated liver by CCl4 promoted its subsequent regeneration after PHx. This was not a cause of fibrosis and partly dependent on MMP9 pre-activity rather than cell proliferation in liver. Our findings would not only provide a novel strategy for liver regeneration without cell proliferation as much as possible and also propose a new method for liver transplantation.
Collapse
Affiliation(s)
- Yuko Arioka
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan,
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhang Y, Lv J, Guo H, Wei X, Li W, Xu Z. Hypoxia-induced proliferation in mesenchymal stem cells and angiotensin II-mediated PI3K/AKT pathway. Cell Biochem Funct 2015; 33:51-8. [PMID: 25703688 DOI: 10.1002/cbf.3080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/06/2014] [Accepted: 11/04/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Yujuan Zhang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Juanxiu Lv
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Hui Guo
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Xiaoguang Wei
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Weisheng Li
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Zhice Xu
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
- Center for Perinatal Biology; Loma Linda University; California USA
| |
Collapse
|
12
|
Blockade of the renin-angiotensin system inhibits growth of colorectal cancer liver metastases in the regenerating liver. Clin Exp Metastasis 2014; 31:395-405. [PMID: 24442969 DOI: 10.1007/s10585-014-9635-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/02/2014] [Indexed: 01/19/2023]
Abstract
Partial hepatectomy (PH), the preferred option for selected patients with colorectal cancer liver metastases (CRCLM), is associated with 40-80% tumor recurrence rates. Renin-angiotensin system (RAS) blockade inhibits tumor growth and has been suggested to improve liver regeneration. We documented the effect of RAS blockade on tumor growth and liver regeneration in a murine model. CRCLM induction followed by 70% PH was performed on 78 CBA mice. Liver regeneration (days 2, 6) and CRCLM tumor load were measured by liver (and tumor) weights, percentage of CRCLM burden and tumor nodule count (days 16, 21). mRNA expression of the RAS components was characterised. Statistical analysis was performed using 2-independent sample T test or Mann-Whitney test (SPSS). Captopril did not impair liver regeneration. By day 21, Captopril decreased tumor burden (percentage of CRCLM in the liver) (48.7 ± 4.7% control, 24.4 ± 6.2 Captopril; p = 0.008), tumor volume (1046.2 ± 200.2 mm(3), 388.3 ± 150.4; p = 0.02), tumor nodule count per image field (181.1 ± 28.5, 68 ± 17.6; p = 0.005) and tumor angiogenesis (71.8 ± 6.4 vessels/mm(2), 43.1 ± 7.6; p = 0.015) compared to controls. Captopril enhanced tumor apoptosis (1 ± 0.2%, 2.5 ± 0.7; p = 0.028). Liver regeneration and tumor development increased liver ACE levels. Blockade of the RAS effectively retarded CRCLM tumor growth at the late stage of tumor development within the regenerating liver without impeding liver regeneration following PH, via anti-angiogenesis and pro-tumor apoptosis. Captopril may be of therapeutic benefit in patients undergoing PH for CRCLM.
Collapse
|
13
|
Wen SW, Ager EI, Neo J, Christophi C. The renin angiotensin system regulates Kupffer cells in colorectal liver metastases. Cancer Biol Ther 2013; 14:720-7. [PMID: 23792575 DOI: 10.4161/cbt.25092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Blockade of the renin angiotensin system (RAS) can inhibit tumor growth and this may be mediated via undefined immunomodulatory actions. This study investigated the effects of RAS blockade on liver macrophages (Kupffer cells; KCs) in an orthotopic murine model of colorectal cancer (CRC) liver metastases. Here we showed that pharmacological targeting of the RAS [ANG II (31.25 µg/kg/h i.p.), ANG-(1-7) (24 µg/kg/h i.p.) or the ACE inhibitor; captopril (750 mg/kg/d i.p.)] altered endogenous KC numbers in the tumor-bearing liver throughout metastatic growth. Captopril, and to a lesser extent ANG-(1-7), increased KC numbers in the liver but not tumor. KCs were found to express the key RAS components: ACE and AT1R. Treatment with captopril and ANG II increased the number of AT1R-expressing KCs, although total KC numbers were not affected by ANG II. Captopril (0.1 µM) also increased macrophage invasion in vitro. Additionally, captopril was administered with KC depletion before tumor induction (day 0) or at established metastatic growth (day 18) using gadolinium chloride (GdCl 3; 20 mg/kg). Livers were collected at day 21 and quantitative stereology used as a measure of tumor burden. Captopril reduced growth of CRC liver metastases. However, when captopril was combined with early KC depletion (day 0) tumor growth was significantly increased compared with captopril alone. In contrast, late KC depletion (day 18) failed to influence the anti-tumor effects of captopril. The result of these studies suggests that manipulation of the RAS can alter KC numbers and may subsequently influence progression of CRC liver metastases.
Collapse
Affiliation(s)
- Shu Wen Wen
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
| | | | | | | |
Collapse
|