1
|
Al Gburi MRA, Altinoz E, Elbe H, Onal MO, Yilmaz U, Yilmaz N, Karayakali M, Demir M. Pinealectomy and melatonin administration in rats: their effects on pulmonary edema induced by α-naphthylthiourea. Drug Chem Toxicol 2023; 46:1024-1034. [PMID: 36069203 DOI: 10.1080/01480545.2022.2119994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/21/2022] [Accepted: 05/01/2022] [Indexed: 11/03/2022]
Abstract
We aimed to observe the possible effects of melatonin (MLT) deprivation (pinealectomy) and exogenous MLT administration on pulmonary edema induced by alpha-naphthylthiourea (ANTU), a toxic chemical agent, in rats. Seventy animals were assigned to seven groups: control, sham pinealectomy (PINX), PINX, ANTU (10 mg/kg intraperitoneal on day 30), ANTU + MLT (10 mg/kg/day i.p. for 30 days), ANTU + PINX, and ANTU + PINX + MLT.In this study, pleural effusion (PE) formation, lung weight/body weight (LW/BW) and PE/BW ratios (fluid accumulation and weight values in the lungs) increase detected. Pre-ANTU MLT administration led to significant decreases in PE, LW/BW, and PE/BW levels. The inhibited glutathione (GSH) and superoxide dismutase (SOD) levels and high malondialdehyde (MDA) levels that ANTU increase lipid peroxidation in the study. MLT administration eliminated oxidative stress by reducing MDA and ameliorating GSH and SOD levels.Pre-ANTU MLT administration led to a significant decrease in interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels in the lung when compared to the ANTU group without MLT administration. Post-pinealectomy ANTU administration significantly increased IL-1β and TNF-α levels when compared to ANTU and MLT administration without pinealectomy. Diffused inflammatory cell infiltration, interstitial pulmonary edema, and histopathological congestion were observed after the administration of ANTU. Severity of the damage was elevated in the ANTU + PINX group. MLT treatment regressed pulmonary effusion and edema and improves lung structure. In brief, the findings suggested that MLT inhibited proinflammatory mediators and could serve as a therapeutic agent to prevent inflammatory disorders.
Collapse
Affiliation(s)
| | - Eyup Altinoz
- Department of Medical Biochemistry, Karabuk University, Karabuk, Turkey
| | - Hulya Elbe
- Department of Histology and Embryology, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Melike Ozgul Onal
- Department of Histology and Embryology, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Umit Yilmaz
- Department of Physiology, Karabuk University, Karabuk, Turkey
| | - Nesibe Yilmaz
- Department of Anatomy, Karabuk University, Karabuk, Turkey
| | - Melike Karayakali
- Department of Medical Biochemistry, Karabuk University, Karabuk, Turkey
| | - Mehmet Demir
- Department of Physiology, Karabuk University, Karabuk, Turkey
| |
Collapse
|
2
|
Liu X, Lin S, Zhong Y, Shen J, Zhang X, Luo S, Huang L, Zhang L, Zhou S, Tang J. Remimazolam Protects Against LPS-Induced Endotoxicity Improving Survival of Endotoxemia Mice. Front Pharmacol 2021; 12:739603. [PMID: 34867346 PMCID: PMC8641375 DOI: 10.3389/fphar.2021.739603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
Remimazolam is a new benzodiazepine of sedative drugs with an ultra-short-acting anesthetic effect, commonly used for critically ill patients (especially septic patients) in intensive care units (ICUs). Although some anesthetics have been reported to show certain anti-inflammatory effects, the role of remimazolam in inflammation is still remained unknown. Here, we studied the effects of remimazolam on macrophage in response to LPS both in vivo and in vitro. Interestingly, compared with LPS treatment group, remimazolam remarkably improved survival rate of endotoxemia mice and decreased the release of LPS-induced inflammatory mediators (such as TNF-α, IL-6, and IL-1β). We further found that remimazolam not only inhibited the activation of MAPK signal pathway at 15 min after LPS treatment but also disturbed Rab5a related TLR4 expression at cell surface in response to LPS at a later time. Such evidence suggests that remimazolam might be beneficial to septic patients who are suffering from uncontrolled inflammatory responses.
Collapse
Affiliation(s)
- Xiaolei Liu
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shaoping Lin
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yiyue Zhong
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaojiao Shen
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xuedi Zhang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuhua Luo
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Li Huang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liangqing Zhang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuangnan Zhou
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Tang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
3
|
Keskin E, Can EY, Aydın HA, Işık E, Özgen U, Şimşek K, Cengil O, Başar C, Kalaycı M. The preventative effect of of Ro5-4864 (peripheral benzodiazepine receptor agonist) on spinal epidural fibrosis after laminectomy in a rat model. Neurol Res 2021; 43:1107-1115. [PMID: 34461817 DOI: 10.1080/01616412.2021.1949689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the histopathological effects of a peripheral benzodiazepine receptor agonist (Ro5-4864) on epidural fibrosis (EF) in an experimental study model (post-laminectomy) in rats. METHODS A total of 32 albino Wistar rats were randomly divided into four equal groups (n = 8). In Group 1, no treatment was applied after laminectomy (control group). In Group 2, hemostasis was achieved after Laminectomy, and the surgical procedure was terminated by placing a 2-mm absorbable gelatin sponge dipped in saline into the epidural space. In Group 3, low-dose (4 mg/kg) Ro5-4864 was administered 30 minutes before the surgery. In Group 4, high-dose (8 mg/kg) Ro5-4864 was administered 30 minutes before the surgery. A histopathological examination was performed to evaluate arachnoidal invasion and EF. RESULTS Our data revealed the EF was significantly reduced in rats treated with high-dose Ro5-4864 (Group 4) compared to the control and saline-soaked Spongostan groups (p = 0.000 and p = 0.006, respectively). There was no significant difference between the groups treated with high- and low-dose Ro5-4864. Arachnoidal invasion was not seen in any of the rats in the high-dose R05-4864 group. However, the arachnoidal invasion results did not significantly differ between the study groups (p = 0.052 = 0.05). CONCLUSIONS Our study showed that Ro5-4864 could be effective in reducing EF in rats after.
Collapse
Affiliation(s)
- Emrah Keskin
- Department of Neurosurgery, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Emine Yılmaz Can
- Department of Pharmacology, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Hasan Ali Aydın
- Department of Neurosurgery, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Emre Işık
- Department of Pathology, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Utku Özgen
- Department of Neurosurgery, Atatürk State Hospital, Zonguldak, Turkey
| | - Kenan Şimşek
- Department of Neurosurgery, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Osman Cengil
- Department of Experimental Animal Research Laboratory, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Cansu Başar
- Insurance Information and Monitoring Center, Istanbul, Turkey
| | - Murat Kalaycı
- Department of Neurosurgery, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
4
|
Tian J, Middleton B, Kaufman DL. GABA administration prevents severe illness and death following coronavirus infection in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.10.04.325423. [PMID: 33024975 PMCID: PMC7536896 DOI: 10.1101/2020.10.04.325423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is an urgent need for new treatments to prevent and ameliorate severe illness and death induced by SARS-CoV-2 infection in COVID-19 patients. The coronavirus mouse hepatitis virus (MHV)-1 causes pneumonitis in mice which shares many pathological characteristics with human SARS-CoV infection. Previous studies have shown that the amino acid gamma-aminobutyric acid (GABA) has anti-inflammatory effects. We tested whether oral treatment with GABA could modulate the MHV-1 induced pneumonitis in susceptible A/J mice. As expected, MHV-1-inoculated control mice became severely ill (as measured by weight loss, clinical score, and the ratio of lung weight to body weight) and >60% of them succumbed to the infection. In contrast, mice that received GABA immediately after MHV-1 inoculation became only mildly ill and all of them recovered. When GABA treatment was initiated after the appearance of illness (3 days post-MHV-1 infection), we again observed that GABA treatment significantly reduced the severity of illness and greatly increased the frequency of recovery. Therefore, the engagement of GABA receptors (GABA-Rs) prevented the MHV-1 infection-induced severe pneumonitis and death in mice. Given that GABA-R agonists, like GABA and homotaurine, are safe for human consumption, stable, inexpensive, and available worldwide, they are promising candidates to help prevent severe illness stemming from SARS-CoV-2 infection and other coronavirus strains.
Collapse
Affiliation(s)
- Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Blake Middleton
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Daniel L Kaufman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| |
Collapse
|
5
|
Li J, Tan H, Zhou X, Zhang C, Jin H, Tian Y, Zhao X, Li X, Sun X, Duan M, Zhang D. The Protection of Midazolam Against Immune Mediated Liver Injury Induced by Lipopolysaccharide and Galactosamine in Mice. Front Pharmacol 2019; 9:1528. [PMID: 30670973 PMCID: PMC6331471 DOI: 10.3389/fphar.2018.01528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/13/2018] [Indexed: 01/23/2023] Open
Abstract
Objectives: Liver macrophages agitated by Lipopolysaccharide (LPS) can enhance immuno-inflammatory responses in the liver which mediate liver injury and result in dysfunction. Midazolam has been reported to have inhibitory effects on activated immunity and escalated inflammation, however, what the effects of midazolam on the liver injury caused by excessive immuno-inflammatory response in sepsis, and what influence it will exert on inflamed liver macrophages need to be elucidated. Methods: In the present study, LPS and galactosamine-induced acute liver injury mice were used to observe the effect of midazolam in vivo. LPS-stimulated bone marrow cells were used to evaluate the influence of midazolam on monocytes in vitro. Results: Midazolam prevented liver tissue injury and decreased serum alanine transaminase (ALT) level in LPS plus galactosamine treated mice. Mechanistically, midazolam suppressed tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) produced by LPS stimulated liver macrophages in vivo and bone marrow monocytes in vitro, and reduced the expression of major histocompatibility complex class II (MHC II), cluster of differentiation 40 and 86 (CD40 and CD86) on the cell surface. These results could be reversed by PK-11195, a peripheral benzodiazepine receptor (PBR) blocker. Conclusion: Midazolam can prevent liver from LPS-induced immune mediated liver injury by inhibiting inflammation and immune activation in liver macrophages.
Collapse
Affiliation(s)
- Jian Li
- Department of Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Hong Tan
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaona Zhou
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunpan Zhang
- Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hua Jin
- Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yue Tian
- Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinyan Zhao
- Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Xinmin Li
- Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuelian Sun
- Beijing Clinical Research Institute, Beijing, China.,Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meili Duan
- Department of Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Dong Zhang
- Beijing Clinical Research Institute, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|