1
|
Chen M, Luo J, Jiang W, Chen L, Miao L, Han C. Cordycepin: A review of strategies to improve the bioavailability and efficacy. Phytother Res 2023; 37:3839-3858. [PMID: 37329165 DOI: 10.1002/ptr.7921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/18/2023]
Abstract
Cordycepin is a bioactive compound extracted from Cordyceps militaris. As a natural antibiotic, cordycepin has a wide variety of pharmacological effects. Unfortunately, this highly effective natural antibiotic is proved to undergo rapid deamination by adenosine deaminase (ADA) in vivo and, as a consequence, its half-life is shortened and bioavailability is decreased. Therefore, it is of critical importance to work out ways to slow down the deamination so as to increase its bioavailability and efficacy. This study reviews recent researches on a series of aspects of cordycepin such as the bioactive molecule's pharmacological action, metabolism and transformation as well as the underlying mechanism, pharmacokinetics and, particularly, the methods for reducing the degradation to improve the bioavailability and efficacy. It is drawn that there are three methods that can be applied to improve the bioavailability and efficacy: to co-administrate an ADA inhibitor and cordycepin, to develop more effective derivatives via structural modification, and to apply new drug delivery systems. The new knowledge can help optimize the application of the highly potent natural antibiotic-cordycepin and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Min Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Medicine, Linyi University, Linyi, China
| | - Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenming Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijing Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Longxing Miao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Chaicharoenaudomrung N, Kunhorm P, Noisa P. Cordycepin Enhances the Cytotoxicity of Human Natural Killer Cells against Cancerous Cells. Biol Pharm Bull 2023; 46:1260-1268. [PMID: 37661405 DOI: 10.1248/bpb.b23-00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cancer treatment with natural killer (NK) cell immunotherapy is promising. NK cells can recognize and kill cancer cells without sensitization, making them a potential cancer treatment alternative. To improve clinical efficacy and safety, more research is needed. Enhancing NK cell function improves therapeutic efficacy. Due to its potent apoptosis induction, Cordycepin, a bioactive compound from Cordyceps spp., inhibits cancer cell growth. Cordycepin has immunoregulatory properties, making it a promising candidate for combination therapy with NK cell-based immunotherapy. Cordycepin may enhance NK cell function and have clinical applications, but more research is needed. In this study, cordycepin treatment of NK-92 MI cells increased THP-1 and U-251 cell cytotoxicity. Cordycepin also significantly increased the mRNA expression of cytokine-encoding genes, including tumour necrosis factor (TNF), interferon gamma (IFNG), and interleukin 2 (IL2). NK-92 MI cells notably secreted more IFNG and granzyme B. Cordycepin also decreased CD27 and increased CD11b, CD16, and NKG2D in NK-92 MI cells, which improved its anti-cancer ability. In conclusion, cordycepin could enhance NK cell cytotoxicity against cancerous cells for the first time, supporting its use as an alternative immunoactivity agent against cancer cells. Further studies are needed to investigate its efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| |
Collapse
|
3
|
Liu Y, Guo ZJ, Zhou XW. Chinese Cordyceps: Bioactive Components, Antitumor Effects and Underlying Mechanism-A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196576. [PMID: 36235111 PMCID: PMC9572669 DOI: 10.3390/molecules27196576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Chinese Cordyceps is a valuable source of natural products with various therapeutic effects. It is rich in various active components, of which adenosine, cordycepin and polysaccharides have been confirmed with significant immunomodulatory and antitumor functions. However, the underlying antitumor mechanism remains poorly understood. In this review, we summarized and analyzed the chemical characteristics of the main components and their pharmacological effects and mechanism on immunomodulatory and antitumor functions. The analysis revealed that Chinese Cordyceps promotes immune cells' antitumor function by via upregulating immune responses and downregulating immunosuppression in the tumor microenvironment and resetting the immune cells' phenotype. Moreover, Chinese Cordyceps can inhibit the growth and metastasis of tumor cells by death (including apoptosis and autophagy) induction, cell-cycle arrest, and angiogenesis inhibition. Recent evidence has revealed that the signal pathways of mitogen-activated protein kinases (MAPKs), nuclear factor kappaB (NF-κB), cysteine-aspartic proteases (caspases) and serine/threonine kinase Akt were involved in the antitumor mechanisms. In conclusion, Chinese Cordyceps, one type of magic mushroom, can be potentially developed as immunomodulator and anticancer therapeutic agents.
Collapse
|
4
|
Radhi M, Ashraf S, Lawrence S, Tranholm AA, Wellham PAD, Hafeez A, Khamis AS, Thomas R, McWilliams D, de Moor CH. A Systematic Review of the Biological Effects of Cordycepin. Molecules 2021; 26:5886. [PMID: 34641429 PMCID: PMC8510467 DOI: 10.3390/molecules26195886] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
We conducted a systematic review of the literature on the effects of cordycepin on cell survival and proliferation, inflammation, signal transduction and animal models. A total of 1204 publications on cordycepin were found by the cut-off date of 1 February 2021. After application of the exclusion criteria, 791 papers remained. These were read and data on the chosen subjects were extracted. We found 192 papers on the effects of cordycepin on cell survival and proliferation and calculated a median inhibitory concentration (IC50) of 135 µM. Cordycepin consistently repressed cell migration (26 papers) and cellular inflammation (53 papers). Evaluation of 76 papers on signal transduction indicated consistently reduced PI3K/mTOR/AKT and ERK signalling and activation of AMPK. In contrast, the effects of cordycepin on the p38 and Jun kinases were variable, as were the effects on cell cycle arrest (53 papers), suggesting these are cell-specific responses. The examination of 150 animal studies indicated that purified cordycepin has many potential therapeutic effects, including the reduction of tumour growth (37 papers), repression of pain and inflammation (9 papers), protecting brain function (11 papers), improvement of respiratory and cardiac conditions (8 and 19 papers) and amelioration of metabolic disorders (8 papers). Nearly all these data are consistent with cordycepin mediating its therapeutic effects through activating AMPK, inhibiting PI3K/mTOR/AKT and repressing the inflammatory response. We conclude that cordycepin has excellent potential as a lead for drug development, especially for age-related diseases. In addition, we discuss the remaining issues around the mechanism of action, toxicity and biodistribution of cordycepin.
Collapse
Affiliation(s)
- Masar Radhi
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Sadaf Ashraf
- Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK;
| | - Steven Lawrence
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Asta Arendt Tranholm
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Peter Arthur David Wellham
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Abdul Hafeez
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Ammar Sabah Khamis
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Robert Thomas
- The Primrose Oncology Unit, Bedford Hospital NHS Trust, Bedford MK42 9DJ, UK;
- Department of Oncology, Addenbrooke’s Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - Daniel McWilliams
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham NG5 1PB, UK
| | - Cornelia Huiberdina de Moor
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| |
Collapse
|
5
|
Lee CT, Huang KS, Shaw JF, Chen JR, Kuo WS, Shen G, Grumezescu AM, Holban AM, Wang YT, Wang JS, Hsiang YP, Lin YM, Hsu HH, Yang CH. Trends in the Immunomodulatory Effects of Cordyceps militaris: Total Extracts, Polysaccharides and Cordycepin. Front Pharmacol 2020; 11:575704. [PMID: 33328984 PMCID: PMC7735063 DOI: 10.3389/fphar.2020.575704] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Cordyceps militaris (C. militaris) is a fungus with a long history of widespread use in folk medicine, and its biological and medicinal functions are well studied. A crucial pharmacological effect of C. militaris is immunomodulation. In this review, we catalog the immunomodulatory effects of different extracts of C. militaris, namely total extracts, polysaccharides and cordycepin. Total extracts obtained using water or 50% ethyl alcohol and polysaccharides from C. militaris were discovered to tend to promote type 1 immunity, whereas total extracts obtained using 70-80% ethyl alcohol and cordycepin from C. militaris were more likely to promote type 2 immunity. This article is the first to classify the immunomodulatory effects of different extracts of C. militaris. In addition, we discovered a relationship between different segments or extracts and differing types of immunity. This review can provide the readers a comprehensive understanding on the immunomodulatory effects of the precious folk medicine and guidance on its use for both health people and those with an immunodeficiency.
Collapse
Affiliation(s)
- Chun-Ting Lee
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Amulette Chinese Medicine Clinic, Tainan City, Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Jei-Fu Shaw
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Jung-Ren Chen
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Shuo Kuo
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Gangxu Shen
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Polytechnic University of Bucharest, Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, University of Bucharest, Bucharest, Romania
| | - Yi-Ting Wang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Jun-Sheng Wang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Taipei, Taiwan
| | - Yi-Ping Hsiang
- Pharmacy Department of E-Da Hospital, Kaohsiung City, Taiwan
| | - Yu-Mei Lin
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Hsiao-Han Hsu
- Amulette Chinese Medicine Clinic, Tainan City, Taiwan
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Taipei, Taiwan
- Pharmacy Department of E-Da Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
6
|
Boontiam W, Wachirapakorn C, Wattanachai S. Growth performance and hematological changes in growing pigs treated with Cordyceps militaris spent mushroom substrate. Vet World 2020; 13:768-773. [PMID: 32546924 PMCID: PMC7245730 DOI: 10.14202/vetworld.2020.768-773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/11/2020] [Indexed: 12/04/2022] Open
Abstract
Background and Aim: This study was aimed to compare the efficacy of dietary Cordyceps militaris spent mushroom substrate (CMS) on growth performance, immunity, metabolic profiles, and antioxidant capacity in growing pigs. Materials and Methods: Seventy-two crossbred growing pigs (Duroc×Landrace×Yorkshire) with an average initial body weight (BW) of 25.78±0.33 kg were allotted into two dietary treatments in six pens (six growing pigs each). Dietary treatments were (i) control and (ii) supplemented group with 2 g/kg CMS. Results: Growing pigs fed with 2 g/kg CMS showed improvements in final BW (p=0.034) and average daily weight gain (p=0.039). Moreover, there were positive changes in immunoglobulin A (p=0.013), immunoglobulin G (p=0.019), total antioxidant capacity (p=0.001), and glutathione peroxidase activity (p=0.003), whereas decreased leukocyte percentage (p=0.002), cholesterol (p=0.023), and malondialdehyde (MDA) concentrations (p=0.002) were noted in the CMS supplemented treatment. Average daily feed intake, gain-to-feed ratio, glucose, aspartate aminotransferase, triglyceride, high-density lipoprotein, and low-density lipoprotein were unaffected by the treatments. Conclusion: Supplementation of CMS at 2g/kg of diet increases growth performance, immunoglobulin secretion, and antioxidant capacity, whereas it lowers leukocyte percentage, cholesterol, and MDA concentrations in growing pigs.
Collapse
Affiliation(s)
- Waewaree Boontiam
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chalong Wachirapakorn
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suchat Wattanachai
- Department of Surgery and Theriogenology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
7
|
Wang X, Xi D, Mo J, Wang K, Luo Y, Xia E, Huang R, Luo S, Wei J, Ren Z, Pang H, Yang R. Cordycepin exhibits a suppressive effect on T cells through inhibiting TCR signaling cascade in CFA-induced inflammation mice model. Immunopharmacol Immunotoxicol 2020; 42:119-127. [PMID: 32105161 DOI: 10.1080/08923973.2020.1728310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective: Cordycepin has been shown to exhibit multiple pharmacological activities, such as antitumor, antifungi, antivirus, and immune-regulation activities, and is involved in the regulation of T cells. However, cordycepin that affects T cell activity is still not clear, and the molecular mechanism of cordycepin in regulation of TCR signaling has not yet been elucidated. In this study, the potential effect of cordycepin on T cells was observed in CFA-induced inflammation mice model, and the function of cordycepin in regulating TCR signaling cascade was investigated.Methods: A CFA-induced inflammation mice model was established for observing the effect of cordycepin on the thymus and spleen swellings, and T cell infiltration in paw tissue was detected by immunohistochemistry. The protein expression or phosphorilation was detected by western blotting, and the NFAT1 nuclear translocation was determined by fluorescence imaging. The cell proliferation, apoptosis, and IL-2 production were analyzed by CCK-8 method, flow cytometry, and ELISA.Results: In the mice model, the thymus and spleen swellings were suppressed and the T cell infiltration in paw tissue was inhibited by cordycepin at a concentration of 10 mg/kg. Although the expressions of ZAP70 and PLCγ1 were not significantly changed in the human T cell line Jurkat with cordycepin pretreatment, the CD3-antibody-induced phosphorylations of ZAP70 and PLCγ1 were markedly blocked. The protein level of p85 decreased when Jurkat cells were pretreated with cordycepin, and cordycepin blocked TCR downstream molecule Erk phosphorylation and NFAT1 nuclear translocation. Further investigation revealed that cordycepin inhibited T cell proliferation, reduced IL-2 production, and induced T cell apoptosis. Conclusions: These findings suggest that cordycepin regulates TCR signaling to inhibit excessive T cell activation in inflammation. Thus, cordycepin may be a potential therapeutic application in inflammation-associated diseases.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Immunology, School of Preclinical Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Deshuang Xi
- Department of Immunology, School of Preclinical Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Jian Mo
- Department of Immunology, School of Preclinical Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Ke Wang
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Yu Luo
- Department of Clinical Laboratory, Peoples's Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Erbin Xia
- Department of Immunology, School of Preclinical Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Rong Huang
- Department of Immunology, School of Preclinical Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Shunrong Luo
- Department of Immunology, School of Preclinical Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Jiao Wei
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Zhenghua Ren
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, National Engineering Research Center of South China Sea Marine Biotechnology, College of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hui Pang
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Rirong Yang
- Department of Immunology, School of Preclinical Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
8
|
Sánchez JA, Alfonso A, Rodriguez I, Alonso E, Cifuentes JM, Bermudez R, Rateb ME, Jaspars M, Houssen WE, Ebel R, Tabudravu J, Botana LM. Spongionella Secondary Metabolites, Promising Modulators of Immune Response through CD147 Receptor Modulation. Front Immunol 2016; 7:452. [PMID: 27822214 PMCID: PMC5075563 DOI: 10.3389/fimmu.2016.00452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/11/2016] [Indexed: 12/04/2022] Open
Abstract
The modulation of the immune system can have multiple applications such as cancer treatment, and a wide type of processes involving inflammation where the potent chemotactic agent cyclophilin A (Cyp A) is implicated. The Porifera phylum, in which Spongionella is encompassed, is the main producer of marine bioactive compounds. Four secondary metabolites obtained from Spongionella (Gracilin H, A, L, and Tetrahydroaplysulphurin-1) were described to hit Cyp A and to block the release of inflammation mediators. Based on these results, some role of Spongionella compounds on other steps of the signaling pathway mediated by this chemotactic agent can be hypothesized. In the present paper, we studied the effect of these four compounds on the surface membrane CD147 receptor expression, on the extracellular levels of Cyp A and on the ability to migrate of concanavalin (Con A)-activated T lymphocytes. Similar to a well-known immunosuppressive agent cyclosporine A (CsA), Gracilin H, A, L, and tetrahydroaplysulphurin-1 were able to reduce the CD147 membrane expression and to block the release of Cyp A to the medium. Besides, by using Cyp A as chemotactic agent, T cell migration was inhibited when cells were previously incubated with Gracilin A and Gracilin L. These positive results lead us to test the in vivo effect of Gracilin H and L in a mouse ear delayed hypersensitive reaction. Thus, both compounds efficiently reduce the ear swelling as well as the inflammatory cell infiltration. These results provide more evidences for their potential therapeutic application in immune-related diseases of Spongionella compounds.
Collapse
Affiliation(s)
- Jon Andoni Sánchez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela , Lugo , Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela , Lugo , Spain
| | - Ines Rodriguez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela , Lugo , Spain
| | - Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela , Lugo , Spain
| | - José Manuel Cifuentes
- Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago de Compostela , Lugo , Spain
| | - Roberto Bermudez
- Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago de Compostela , Lugo , Spain
| | - Mostafa E Rateb
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen, Scotland, UK; Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marcel Jaspars
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen , Aberdeen, Scotland , UK
| | - Wael E Houssen
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen, Scotland, UK; Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Rainer Ebel
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen , Aberdeen, Scotland , UK
| | - Jioji Tabudravu
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen , Aberdeen, Scotland , UK
| | - Luís M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela , Lugo , Spain
| |
Collapse
|
9
|
Sánchez JA, Alfonso A, Thomas OP, Botana LM. Autumnalamide targeted proteins of the immunophilin family. Immunobiology 2016; 222:241-250. [PMID: 27720433 DOI: 10.1016/j.imbio.2016.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 09/19/2016] [Accepted: 09/26/2016] [Indexed: 11/25/2022]
Abstract
Previous works with autumnalamide reported that Store Operated Calcium (SOC) channels were blocked through mitochondrial modulation. In the present paper we studied the effect of autumnalamide on ionomycin Ca2+ fluxes. Thus, autumnalamide did not modify ionomycin-sensitive intracellular pools while the ionomycin-induced Ca2+ influx was blocked with similar potency whether the incubation was done before or after ionomycin-sensitive pools depletion. Nevertheless, autumnalamide was not able to inhibit ionomycin-induced Ca2+ influx once the membrane channels were activated. Moreover, the compound efficiently inhibited flufenamic acid (FFA) Ca2+ release induced in this organelle but no the next influx. Since in previous work the effect of autumnalamide was inhibited by cyclosporine A (CsA), structures that target this drug were studied. Therefore, the affinity of autumnalamide for cyclophilin D (Cyp D) was examined. The KD obtained for Cyp D- autumnalamide was 1.51±1.399. Moreover, the KD for Cyp A- autumnalamide was calculated. The peptide had a similar order of Cyp A binding affinity than CsA (8.08±1.23 and 6.85±1.1μM respectively). After testing autumnalamide-binding capacity for Cyp A, the activity of this compound on Cyp A pathway was tested. Thus, the effect on interleukin (IL)-2 release on activated T-lymphocytes was checked. Autumnalamide was able to reduce IL-2 levels near to T cells in resting conditions. Next, the effect over calcineurin and NFATc1 was also evaluated. While CsA inhibits both calcineurin and NFATc1, autumnalamide did not produce any effect. From these results we can conclude that, autumnalamide targeted mitochondrion and prevent T-cells from IL-2 production through the modulation of SOC Ca2+ channels.
Collapse
Affiliation(s)
- Jon Andoni Sánchez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | - Olivier P Thomas
- Geoazur, UMR Université Nice Sophia Antipolis-CNRS-IRD-OCA, 250 rue Albert Einstein, 06560, Valbonne, France; Marine Biodiscovery, School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland.
| | - Luís M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
10
|
Dual-Directional Immunomodulatory Effects of Corbrin Capsule on Autoimmune Thyroid Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1360386. [PMID: 27721890 PMCID: PMC5045992 DOI: 10.1155/2016/1360386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/11/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023]
Abstract
Purpose. To investigate the effects of Corbrin Capsule (CS-C-Q80), a drug derived from Cordyceps sinensis (Berk.) Sacc., on autoimmune thyroid diseases (AITD). Methods. 44 Patients with Graves's disease (GD) and 56 patients with Hashimoto's thyroiditis (HT) were randomly assigned to treatment group (GD-Tx and HT-Tx) or control group (GD-Ct and HT-Ct). The control groups were given methimazole or levothyroxine only while the treatment groups were given Corbrin Capsule (2.0 g tid) besides the same conventional prescriptions as control groups. Thyroid hormones, thyroid antibodies, and T lymphocyte subsets were quantified at baseline and 24 weeks posttreatment. Results. Significant drop of serum anti-TPO-Ab levels was observed in both GD-Tx and HT-Tx groups. Before treatment, GD patients had higher helper T cells compared to cytotoxic T cells, while HT patients suffered from a nearly inverted proportion of helper T/cytotoxic T cells. There was a significant drop of the helper T/cytotoxic T cells ratio in GD-Tx to the median of the normal ranges after Corbrin treatment for 24 weeks, while that in HT-Tx was elevated. Conclusion. Corbrin Capsule could restore the balance between helper T and cytotoxic T cells in both GD and HT patients with dual-directional immunomodulatory effects. And it could significantly reduce the autoantibody levels in both GD and HT.
Collapse
|
11
|
Identification of Spongionella compounds as cyclosporine A mimics. Pharmacol Res 2016; 107:407-414. [DOI: 10.1016/j.phrs.2016.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 01/29/2023]
|
12
|
Inhoffen J, Tuma-Kellner S, Straub B, Stremmel W, Chamulitrat W. Deficiency of iPLA₂β Primes Immune Cells for Proinflammation: Potential Involvement in Age-Related Mesenteric Lymph Node Lymphoma. Cancers (Basel) 2015; 7:2427-42. [PMID: 26690222 PMCID: PMC4695901 DOI: 10.3390/cancers7040901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
Proinflammation can predispose the body to autoimmunity and cancer. We have reported that iPLA2β−/− mice are susceptible to autoimmune hepatitis and colitis. Here we determined whether cytokine release by immune cells could be affected by iPLA2β deficiency alone or combined with CD95/FasL-antibody treatment in vivo. We also determined whether cancer risk could be increased in aged mutant mice. Immune cells were isolated from 3-month old male WT and iPLA2β−/− mice, and some were injected with anti-CD95/FasL antibody for 6 h. Kupffer cells (KC) or splenocytes and liver lymphocytes were stimulated in vitro by lipopolysaccharide or concanavalinA, respectively. Whole-body iPLA2β deficiency caused increased apoptosis in liver, spleen, and mesenteric lymph node (MLN). KC from mutant mice showed suppressed release of TNFα and IL-6, while their splenocytes secreted increased levels of IFNγ and IL-17a. Upon CD95/FasL activation, the mutant KC in turn showed exaggerated cytokine release, this was accompanied by an increased release of IFNγ and IL-17a by liver lymphocytes. Aged iPLA2β−/− mice did not show follicular MLN lymphoma commonly seen in aged C57/BL6 mice. Thus, iPLA2β deficiency renders M1- and Th1/Th17-proinflammation potentially leading to a reduction in age-related MLN lymphoma during aging.
Collapse
Affiliation(s)
- Johannes Inhoffen
- Department of Internal Medicine IV, University Heidelberg Hospital, 69120 Heidelberg, Germany.
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University Heidelberg Hospital, 69120 Heidelberg, Germany.
| | - Beate Straub
- Pathology Institute of Medical Faculty Heidelberg, 69120 Heidelberg, Germany.
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University Heidelberg Hospital, 69120 Heidelberg, Germany.
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Heidelberg Hospital, 69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Dalla Rosa L, Da Silva AS, Oliveira CB, Gressler LT, Arnold CB, Baldissera MD, Sagrillo M, Sangoi M, Moresco R, Mendes RE, Weiss PE, Miletti LC, Monteiro SG. Dose finding of 3′deoxyadenosine and deoxycoformycin for the treatment of Trypanosoma evansi infection: An effective and nontoxic dose. Microb Pathog 2015; 85:21-8. [DOI: 10.1016/j.micpath.2015.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/15/2015] [Accepted: 05/24/2015] [Indexed: 10/23/2022]
|