1
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. HISTOLOGICAL COMPARISON OF REPEATED MILD WEIGHT DROP AND LATERAL FLUID PERCUSSION INJURY MODELS OF TRAUMATIC BRAIN INJURY IN FEMALE AND MALE RATS. Shock 2024; 62:398-409. [PMID: 38813916 DOI: 10.1097/shk.0000000000002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT In preclinical traumatic brain injury (TBI) research, the animal model should be selected based on the research question and outcome measures of interest. Direct side-by-side comparisons of different injury models are essential for informing such decisions. Here, we used immunohistochemistry to compare the outcomes from two common models of TBI, lateral fluid percussion (LFP) and repeated mild weight drop (rmWD) in adult female and male Wistar rats. Specifically, we measured the effects of LFP and rmWD on markers of cerebrovascular and tight junction disruption, neuroinflammation, mature neurons, and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA 2/3 area of the hippocampus. Animals were randomized into the LFP or rmWD group. On day 1, the LFP group received a craniotomy, and on day 4, injury (or sham procedure; randomly assigned). The rmWD animals underwent either injury or isoflurane only (randomly assigned) on each of those 4 days. Seven days after injury, brains were harvested for analysis. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy only, whereas rmWD animals showed the least residual changes compared with isoflurane-only controls, supporting consideration of rmWD as a mild injury. LFP led to longer-lasting disruptions, perhaps more representative of moderate TBI. We also report that craniotomy and LFP produced greater disruptions in females relative to males. These findings will assist the field in the selection of animal models based on target severity of postinjury outcomes and support the inclusion of both sexes and appropriate control groups.
Collapse
Affiliation(s)
| | - Shealan C Cruise
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | | |
Collapse
|
2
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. Histological comparison of repeated mild weight drop and lateral fluid percussion injury models of traumatic brain injury (TBI) in female and male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578177. [PMID: 38352449 PMCID: PMC10862833 DOI: 10.1101/2024.01.31.578177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Traumatic brain injury (TBI) heterogeneity has led to the development of several preclinical models, each modeling a distinct subset of outcomes. Selection of an injury model should be guided by the research question and the specific outcome measures of interest. Consequently, there is a need for conducting direct comparisons of different TBI models. Here, we used immunohistochemistry to directly compare the outcomes from two common models, lateral fluid percussion (LFP) and repeat mild weight drop (rmWD), on neuropathology in adult female and male Wistar rats. Specifically, we used immunohistochemistry to measure the effects of LFP and rmWD on cerebrovascular and tight junction disruption, inflammatory markers, mature neurons and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA2/3 area of the hippocampus. Animals were randomized into either LFP or rmWD groups. The LFP group received a craniotomy prior to LFP (or corresponding sham procedure) three days later, while rmWD animals underwent either weight drop or sham (isoflurane only) on each of those four days. After a recovery period of 7 days, animals were euthanized, and brains were harvested for analysis of RECA-1, claudin-5, GFAP, Iba-1, CD-68, NeuN, and wisteria floribunda lectin. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy-only, while rmWD animals showed the least residual changes compared to isoflurane-only controls. These findings support consideration of rmWD as a mild, transient injury. LFP leads to longer-lasting disruptions that are more closely associated with a moderate TBI. We further show that both craniotomy and LFP produced greater disruptions in females relative to males at 7 days post-injury. These findings support the inclusion of a time-matched experimentally-naïve or anesthesia-only control group in preclinical TBI research to enhance the validity of data interpretation and conclusions.
Collapse
|
3
|
Ndode-Ekane XE, Santana-Gomez C, Casillas-Espinosa PM, Ali I, Brady RD, Smith G, Andrade P, Immonen R, Puhakka N, Hudson MR, Braine EL, Shultz SR, Staba RJ, O'Brien TJ, Pitkänen A. Harmonization of lateral fluid-percussion injury model production and post-injury monitoring in a preclinical multicenter biomarker discovery study on post-traumatic epileptogenesis. Epilepsy Res 2019; 151:7-16. [PMID: 30711714 PMCID: PMC6812686 DOI: 10.1016/j.eplepsyres.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/31/2022]
Abstract
Multi-center preclinical studies can facilitate the discovery of biomarkers of antiepileptogenesis and thus facilitate the diagnosis and treatment development of patients at risk of developing post-traumatic epilepsy. However, these studies are often limited by the difficulty in harmonizing experimental protocols between laboratories. Here, we assess whether the production of traumatic brain injury (TBI) using the lateral fluid-percussion injury (FPI) in adult male Sprague-Dawley rats (12 weeks at the time of injury) was harmonized between three laboratories - located in the University of Eastern Finland (UEF), Monash University in Melbourne, Australia (Melbourne) and The University of California, Los Angeles, USA (UCLA). These laboratories are part of the international multicenter-based project, the Epilepsy Bioinformatics Study for Antiepileptogenesis Therapy (EpiBioS4Rx). Lateral FPI was induced in adult male Sprague-Dawley rats. The success of methodological harmonization was assessed by performing inter-site comparison of injury parameters including duration of anesthesia during surgery, impact pressure, post-impact transient apnea, post-impact seizure-like behavior, acute mortality (<72 h post-injury), time to self-right after the impact, and severity of the injury (assessed with the neuroscore). The data was collected using Common Data Elements and Case Report Forms. The acute mortality was 15% (UEF), 50% (Melbourne) and 57% (UCLA) (p < 0.001). The sites differed in the duration of anesthesia, the shortest being at UEF < Melbourne < UCLA (p < 0.001). The impact pressure used also differed between the sites, the highest being in UEF > Melbourne > UCLA (p < 0.001). The impact pressure associated with the severity of the functional deficits (low neuroscore) (P < 0.05) only at UEF, but not at any of the other sites. Additionally, the sites differed in the duration of post-impact transient apnea (p < 0.001) and time to self-right (P < 0.001), the highest values in both parameters was registered in Melbourne. Post-impact seizure-like behavior was observed in 51% (UEF), 25% (Melbourne) and 2% (UCLA) of rats (p < 0.001). Despite the differences in means when all sites were compared there was significant overlap in injury parameters between the sites. The data reflects the technical difficulties in the production of lateral FPI across multiple sites. On the other hand, the data can be used to model the heterogeneity in human cohorts with closed-head injury. Our animal cohort will provide a good starting point to investigate the factors associated with epileptogenesis after lateral FPI.
Collapse
Affiliation(s)
| | - Cesar Santana-Gomez
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Pablo M Casillas-Espinosa
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Idrish Ali
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Rhys D Brady
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Gregory Smith
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Riikka Immonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Matthew R Hudson
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Emma L Braine
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Sandy R Shultz
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Richard J Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Terence J O'Brien
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria, 3050, Australia
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| |
Collapse
|
4
|
Lim SW, Sung KC, Shiue YL, Wang CC, Chio CC, Kuo JR. Hyperbaric Oxygen Effects on Depression-Like Behavior and Neuroinflammation in Traumatic Brain Injury Rats. World Neurosurg 2017; 100:128-137. [PMID: 28065873 DOI: 10.1016/j.wneu.2016.12.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 12/27/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether hyperbaric oxygen (HBO) therapy causes attenuation of traumatic brain injury (TBI)-induced depression-like behavior and its associated anti-neuroinflammatory effects after fluid percussion injury. METHODS Anesthetized male Sprague-Dawley rats were divided into 3 groups: sham operation plus normobaric air (NBA) (21% oxygen at 1 absolute atmosphere [ATA]), TBI plus NBA, and TBI plus HBO (100% oxygen at 2.0 ATA). HBO was applied immediately for 60 min/d after TBI for 3 days. Depression-like behavior was tested by a forced swimming test, motor function was tested by an inclined plane test, and infarction volume was tested by triphenyltetrazolium chloride (TTC) staining on days 4, 8, and 15. Neuronal apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling assay), microglial (marker OX42) activation, and tumor necrosis factor (TNF)-α expression in microglia in the hippocampus CA3 were measured by immunofluorescence methods. RESULTS Compared with the TBI controls, without significant changes in TTC staining or in the motor function test, TBI-induced depression-like behavior was significantly attenuated by HBO therapy by day 15 after TBI. Simultaneously, TBI-induced neuronal apoptosis, microglial (marker OX42) activation, and TNF-α expression in the microglia in the hippocampus CA3 were significantly reduced by HBO. CONCLUSIONS Our results suggest that HBO treatment may ameliorate TBI-induced depression-like behavior in rats by attenuating neuroinflammation, representing one possible mechanism by which depression-like behavior recovery might occur. We also recommend HBO as a potential treatment for TBI-induced depression-like behavior if early intervention is possible.
Collapse
Affiliation(s)
- Sher-Wei Lim
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Neurosurgery, Chi-Mei Medical Center, Chiali, Tainan, Taiwan; Department of Nursing, Min-Hwei College of Health Care Management, Tainan, Taiwan
| | - Kuan-Chin Sung
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Che-Chuan Wang
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan; Department of Child Care, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chung-Ching Chio
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jinn-Rung Kuo
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| |
Collapse
|
5
|
Szczygielski J, Müller A, Mautes AE, Sippl C, Glameanu C, Schwerdtfeger K, Steudel WI, Oertel J. Selective Brain Hypothermia Mitigates Brain Damage and Improves Neurological Outcome after Post-Traumatic Decompressive Craniectomy in Mice. J Neurotrauma 2017; 34:1623-1635. [PMID: 27799012 DOI: 10.1089/neu.2016.4615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypothermia and decompressive craniectomy (DC) have been considered as treatment for traumatic brain injury. The present study investigates whether selective brain hypothermia added to craniectomy could improve neurological outcome after brain trauma. Male CD-1 mice were assigned into the following groups: sham; DC; closed head injury (CHI); CHI followed by craniectomy (CHI+DC); and CHI+DC followed by focal hypothermia (CHI+DC+H). At 24 h post-trauma, animals were subjected to Neurological Severity Score (NSS) test and Beam Balance Score test. At the same time point, magnetic resonance imaging using a 9.4 Tesla scanner and subsequent volumetric evaluation of edema and contusion were performed. Thereafter, the animals were sacrificed and subjected to histopathological analysis. According to NSS, there was a significant impairment among all the groups subjected to trauma. Animals with both trauma and craniectomy performed significantly worse than animals with craniectomy alone. This deleterious effect disappeared when additional hypothermia was applied. BBS was significantly worse in the CHI and CHI+DC groups, but not in the CHI+DC+H group, compared to the sham animals. Edema and contusion volumes were significantly increased in CHI+DC animals, but not in the CHI+DC+H group, compared to the DC group. Histopathological analysis showed that neuronal loss and contusional blossoming could be attenuated by application of selective brain hypothermia. Selective brain cooling applied post-trauma and craniectomy improved neurological function and reduced structural damage and may be therefore an alternative to complication-burdened systemic hypothermia. Clinical studies are recommended in order to explore the potential of this treatment.
Collapse
Affiliation(s)
- Jacek Szczygielski
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Andreas Müller
- 2 Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Angelika E Mautes
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Christoph Sippl
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Cosmin Glameanu
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Karsten Schwerdtfeger
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Wolf-Ingo Steudel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Joachim Oertel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| |
Collapse
|