1
|
Wang C, Du HB, Zhao ZA, Zhai JY, Zhang LM, Niu CY, Zhao ZG. Autophagy Is Involved in Stellate Ganglion Block Reversing Posthemorrhagic Shock Mesenteric Lymph-Mediated Vascular Hyporeactivity. Front Physiol 2021; 12:728191. [PMID: 34621184 PMCID: PMC8491623 DOI: 10.3389/fphys.2021.728191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/23/2021] [Indexed: 12/05/2022] Open
Abstract
Objective: The aim of this study was to clarify the role of autophagy in stellate ganglion block (SGB) reversing posthemorrhagic shock mesenteric lymph (PHSML)-mediated vascular hyporeactivity. Methods: Hemorrhagic shock model in conscious rats was employed to observe the effects of SGB (0.2 ml of 0.25% ropivacaine hydrochloride hydrate) and autophagy inhibitor 3-methyladenine (3-MA; 30 mg/kg) on the vascular reactivity of second-order rat mesenteric arteries in vitro, while the effects of PHSML (1 ml/kg) and autophagy agonist rapamycin (Rapa, 10 mg/kg) on the beneficial effect of SGB were investigated. The cellular viability, contractility, and autophagy-related protein expressions in vascular smooth muscle cells (VSMCs) were detected following treatments of PHSML, PHSML obtained from the rats that underwent hemorrhagic shock plus SGB (PHSML-SGB), and PHSML plus 3-MA (5 mM), respectively. Results: Hemorrhagic shock significantly decreased the vascular reactivity to gradient norepinephrine (NE), which is reversed by the SGB treatment and 3-MA administration. On the contrary, PHSML intravenous infusion and Rapa administration inhibited the vascular contractile responses in rats that underwent hemorrhagic shock plus SGB treatment. PHSML treatment significantly inhibited the cellular viability and contractility in VSMCs, increased the expressions of LC3-II and Beclin 1, and decreased the expression of p62, along with opposite appearances in these indices following PHSML-SGB treatment. In addition, 3-MA counteracted the adverse roles of PHSML in these indices in VSMCs. Conclusion: SGB inhibits PHSML-mediated vascular hyporeactivity by reducing the excessive autophagy in VSMCs.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Hui-Bo Du
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, China.,Key Laboratory of Critical Disease Mechanism and Intervention in Hebei, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China
| | - Jia-Yi Zhai
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, China.,Key Laboratory of Critical Disease Mechanism and Intervention in Hebei, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China
| | - Chun-Yu Niu
- Key Laboratory of Critical Disease Mechanism and Intervention in Hebei, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China.,Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, China.,Key Laboratory of Critical Disease Mechanism and Intervention in Hebei, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China
| |
Collapse
|
2
|
Wang XR, Du HB, Wang HH, Zhang LM, Si YH, Zhang H, Zhao ZG. Mesenteric Lymph Drainage Improves Cardiac Papillary Contractility and Calcium Sensitivity in Rats with Hemorrhagic Shock. J Surg Res 2021; 266:245-253. [PMID: 34034059 DOI: 10.1016/j.jss.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Myocardial dysfunction is an important adverse factor of hemorrhagic shock that induces refractory hypotension, and post-hemorrhagic shock mesenteric lymph (PHSML) return is involved in this adverse effect. This study investigated whether mesenteric lymph drainage (MLD) improves PHSML return-induced cardiac contractile dysfunction via the restoration of cardiomyocyte calcium sensitivity. MATERIALS AND METHODS A hemorrhage shock model was established by using a controlled hemorrhage through the femoral artery that maintained a mean arterial pressure of 40 ± 2 mmHg for 3 h. MLD and mesenteric lymph duct ligation (MLDL) were performed from 1 to 3 h during hypotension. The papillary muscles of the heart were collected for measurement of calmodulin expression and for determining contractile responses to either isoprenaline or calcium. RESULTS The results showed that either MLD or MLDL reversed the hemorrhagic shock-induced downregulation of calmodulin expression, a marker protein of cardiomyocyte calcium sensitization, in papillary muscles. MLD also improved the decreased contractile response and ±df/dt of the papillary muscle strip to gradient isoprenaline or calcium caused by hemorrhagic shock. CONCLUSION These findings indicate that increased cardiac contractibility may be associated with the restoration of calcium sensitivity produced by PHSML drainage.
Collapse
Affiliation(s)
- Xiao-Rong Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China
| | - Hui-Bo Du
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China
| | - Huai-Huai Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China; The Second Affiliated Hospital, Hebei North University, Zhangjiakou, China
| | - Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China
| | - Yong-Hua Si
- Department of Pediatrics, Cangzhou City People's Hospital, Cangzhou, China
| | - Hong Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China.
| |
Collapse
|
3
|
Estrogen Enhances The Microvascular Reactivity Through Rhoa-Rock Pathway In Female Mice During Hemorrhagic Shock. Shock 2021; 56:611-620. [PMID: 33756501 DOI: 10.1097/shk.0000000000001776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ABSTRACT Vascular hypo-reactivity plays a critical role inducing organ injury during hemorrhagic shock. 17β-estradiol (E2) can induce vasodilation to increase blood flow in various vascular beds. This study observed whether E2 can restore vascular hypo-reactivity induced by hemorrhagic shock, and whether E2 effects are associated with RhoA - Rho kinase (ROCK)- myosin light chain kinase phosphatase (MLCP) pathway. The hemorrhagic shock model (40 ± 2 mmHg for 1 h, resuscitation for 4 h) was established in ovary intact sham operation (OVI), ovariectomized (OVX) and OVX plus E2 supplement female mice. Intestinal microvascular loop was used to assess blood flow in vivo, mRNA expression and vascular reactivity in vitro. Hemorrhagic shock significantly reduced norepinephrine microvascular reactivity. Decreased microvascular reactivity was exacerbated by OVX and reversed by E2 supplement. U-46619 (RhoA agonist) increased microvascular reactivity, and C3 transferase (an ADP ribosyl transferase that selectively induces RhoA ribosylation) or Y-27632 (ROCK inhibitor) inhibited sham mice microvascular reactivity. Similarly, U-46619 increased microvascular reactivity in OVI and OVX mice following hemorrhagic shock, which was abolished by Y-27632 or concomitant incubation of okadaic acid (OA) (MLCP inhibitor) and Y-27632. In OVX plus E2 supplement mice with hemorrhagic shock, Y-27632 inhibited microvascular reactivity, which was abolished by concomitant U-46619 application. Lastly, hemorrhagic shock remarkably decreased intestinal loop blood flow, RhoA and ROCK mRNA expressions in vascular tissues in OVX females, but not in OVI females, which were reversed by E2 supplement. These results indicate that estrogen improves microvascular reactivity during hemorrhagic shock, and RhoA-ROCK signaling pathway may mediate E2 effects.
Collapse
|
4
|
Zhao Y, Zhang L, Han R, Si Y, Zhao Z. Intravenous injection of post-hemorrhagic shock mesenteric lymph induces multiple organ injury in rats. Exp Ther Med 2018; 17:1449-1455. [PMID: 30680027 DOI: 10.3892/etm.2018.7048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 11/14/2018] [Indexed: 12/28/2022] Open
Abstract
Post-hemorrhagic shock mesenteric lymph (PHSML) has an important role in the multiple organ injuries caused by severe shock. The current study investigated whether intravenous injection of PHSML induces organ injury in normal rats. Following the establishment of hemorrhagic shock in donor rats (40±2 mmHg, 3 h), PHSML was drained during hypotension at 1-3 h and then injected to normal rats through the femoral vein within 30 min. The mean arterial pressure (MAP) was measured, and samples were obtained for analysis of histology and biochemical indices at 2.5 h post-PHSML administration. PHSML administration resulted in a significant decrease in MAP at the early and late stage of the experiment. Structural damage of the lung, kidney, heart and liver was also observed, and the levels of urea, creatinine, aspartate aminotransferase, total bile acid and creatine kinase MB isoenzyme were increased in the plasma. Additionally, PHSML injection significantly increased the levels of trypsin, tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 and receptor of advanced glycation end-products in the plasma, malondialdehyde in the lung and myocardium, and TNF-α in the lung, kidney, myocardium and liver. Intravenous injection of PHSML induced multiple organ injury in normal rats via increases in trypsin activity, inflammatory factors and free radical production. The findings indicate that PHSML return is an important contributor to organ damage following hemorrhagic shock.
Collapse
Affiliation(s)
- Yifeng Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China.,Department of Oncological Surgery, The Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Limin Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Rui Han
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Yonghua Si
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China.,Department of Pediatrics, Cangzhou City People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Zigang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| |
Collapse
|
5
|
Wang XQ, Zhang YP, Zhang LM, Feng NN, Zhang MZ, Zhao ZG, Niu CY. Resveratrol enhances vascular reactivity in mice following lipopolysaccharide challenge via the RhoA-ROCK-MLCP pathway. Exp Ther Med 2017; 14:308-316. [PMID: 28672931 PMCID: PMC5488661 DOI: 10.3892/etm.2017.4486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to identify whether sepsis-induced vascular hyporeactivity is associated with microcirculation disturbance and multiple organ injuries. The current study assessed the impact of resveratrol (Res) treatment on lipopolysaccharide (LPS) challenge mediated vascular hyporeactivity. Effects of Res treatment (30 mg/kg; i.m.) at 1 h following LPS stimulation (5 mg/kg; i.v.) on the survival time, mean arterial pressure (MAP), and maximal difference of MAP (ΔMAP) to norepinephrine (NE; 4.2 µg/kg) in mice were observed. The reactivity to gradient NE of isolated mesenteric arterioles and the association with the RhoA-RhoA kinase (ROCK)-myosin light chain phosphatase (MLCP) pathway were investigated by myography, and the signaling molecule protein levels were assessed using ELISA. Res treatment prolonged the survival time of mice subjected to LPS challenge, but did not prevent the LPS-induced hypotension and increase in ΔMAP. Res treatment and RhoA agonist U-46619 incubation prevented LPS-induced vascular hyporeactivity ex vivo, which were suppressed by incubation with ROCK inhibitor Y-27632. LPS-induced vascular hyporeactivity was not affected by the MLCP inhibitor okadaic acid incubation, but was further downregulated by the co-incubation of OA plus Y-27632. The inhibiting effect of Y-27632 on Res treatment was eradicated by incubation with U-46619. Furthermore, RhoA inhibitor C3 transferase did not significantly inhibit the enhancing role of Res treatment, which was further increased by U-46619 plus C3 transferase co-incubation. In addition, Res treatment eradicated the LPS-induced decreases in p-RhoA and p-Mypt1 levels and increases in MLCP levels. The results of the present study indicate that post-treatment of Res significantly ameliorates LPS-induced vascular hyporeactivity, which is associated with the activation of the RhoA-ROCK-MLCP pathway.
Collapse
Affiliation(s)
- Xu-Qing Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Yu-Ping Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Niu-Niu Feng
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Ming-Zhu Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Chun-Yu Niu
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| |
Collapse
|
6
|
Zhang HY, Besner GE, Feng JX. Antibody blockade of mucosal addressin cell adhesion molecule-1 attenuates proinflammatory activity of mesenteric lymph after hemorrhagic shock and resuscitation. Surgery 2016; 159:1449-60. [PMID: 26804820 DOI: 10.1016/j.surg.2015.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 01/17/2023]
|
7
|
Posthemorrhagic shock mesenteric lymph enhances monolayer permeability via F-actin and VE-cadherin. J Surg Res 2016; 203:47-55. [PMID: 27338534 DOI: 10.1016/j.jss.2016.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 01/05/2016] [Accepted: 01/27/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vascular hyperpermeability plays a critical role in the development of refractory hypotension after severe hemorrhagic shock. Posthemorrhagic shock mesenteric lymph (PHSML) return has been shown to be involved in regulation of vascular hyperpermeability. The present study was conducted to investigate the effect of PHSML on permeability of endothelial cells in vitro. MATERIALS AND METHODS A hemorrhagic shock model (40 ± 2 mm Hg for 90 min, followed by fluid resuscitation) was used for collection of PHSML. Two separated PHSMLs were collected from period 0-3 h (early) and period 3-6 h (late) after resuscitation and diluted into concentration of 4% or 10%. The human umbilical vein endothelial cells (HUVECs) were then treated with these PHSMLs for 6 h. The monolayer cellular permeability to FITC-albumin was observed by using the costar transwell system. The multiple approaches including scanning electron microscope, fluorescent cytochemistry staining, and Western blotting were also used to assess the changes in cellular morphologic and the expressions of F-actin and VE-cadherin. RESULTS The treatments with either early or late PHSML resulted in morphologic injuries, increased cellular permeability, and decreased expression of F-actin in HUVECs. In contrast, only early PHSML, but not late PHSML, reduced the VE-cadherin expression. CONCLUSIONS These results indicate that the PHSML in vitro increases the cellular permeability of HUVECs through suppression of F-actin and VE-cadherin.
Collapse
|