1
|
Schwerdtfeger M, Desiderio V, Kobold S, Regad T, Zappavigna S, Caraglia M. Long non-coding RNAs in cancer stem cells. Transl Oncol 2021; 14:101134. [PMID: 34051619 PMCID: PMC8176362 DOI: 10.1016/j.tranon.2021.101134] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Long non coding RNAs are involved in the regulation of multiple cellular processes. Cancer stemness and escape from immunological anti-cancer mechanisms are important mechanisms of resistance to anti-cancer agents and are pivotal in controlling cancer development and metastases. Long non coding RNAs have deep effects on the immune-modulation and on the control of cancer stem cells. Several pathways involved in immunological escape and cancer stemness are modulated by long non coding RNAs. Targeting long non coding RNAs is a potential new strategy to control tumor development and metastases.
In recent years, it has been evidenced that the human transcriptome includes several types of non-coding RNAs (ncRNAs) that are mainly involved in the regulation of different cellular processes. Among ncRNAs, long-non-coding RNAs (lncRNAs) are defined as longer than 200 nucleotides and have been shown to be involved in several physiological and pathological events, including immune system regulation and cancer. Cancer stem cells (CSCs) are defined as a population of cancer cells that possess characteristics, such as resistance to standard treatments, cancer initiation, ability to undergo epithelial-to-mesenchymal transition, and the ability to invade, spread, and generate metastases. The cancer microenvironment, together with genetic and epigenetic factors, is fundamental for CSC maintenance and tumor growth and progression. Unsurprisingly, lncRNAs have been involved in both CSC biology and cancer progression, prognosis and recurrence. Here we review the most recent literature on IncRNAs involvement in CSC biology and function.
Collapse
Affiliation(s)
- Melanie Schwerdtfeger
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL); German Center for Translational Cancer Research (DKTK), Partner site Munich, Munich, Germany
| | - Tarik Regad
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
2
|
Wang H, Li Y, Zhou D, Li X, Jia S, Qi S, Huang J. Aldehyde dehydrogenase 1B1 is a potential marker of colorectal tumors. Histol Histopathol 2021; 36:183-194. [PMID: 33438176 DOI: 10.14670/hh-18-304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Colorectal cancer (CRC) is common worldwide. Aldehyde dehydrogenase 1B1 (ALDH1B1), a member of the ALDH1 family, serves as a biomarker for cancer stem cells. We hypothesized that ALDH1B1 expression is associated with colorectal tumors. Immunohistochemistry was used to detect ALDH1B1 expression across a commercial colorectal tissue microarray. The signal intensities of the positively stained tissues were expressed using the mean integrated optical density (mean IOD). We also analyzed ALDH1B1 mRNA expression in the Oncomine database. The associations between ALDH1B1 expression and CRC stage and prognosis were then evaluated using the web-based tools, GEPIA and UALCAN. Analysis of the tissue microarray revealed that the expression of ALDH1B1 was significantly higher in colorectal adenomas and colorectal adenocarcinoma (IOD/area values=0.117±0.070 and 0.168±0.0168, respectively) compared with normal and cancer-adjacent tissues (IOD/area values=0.051±0.028 and 0.068±0.053). For samples collected in the hospital, ALDH1B1 was highly expressed in the adenoma (IOD/area=0.103±0.054) and CRC (IOD/area=0.116±0.059) tissues compared with the cancer-adjacent tissues (IOD/area=0.066±0.024, p<0.05). The expression of ALDH1B1 in tissues from two resources was not found to be significantly associated with CRC stage. In Oncomine, ALDH1B1 mRNA expression was increased in the colorectal tumor tissues compared with the normal colorectal tissues (p=0.024) and its expression was independent of CRC stage and prognosis (p<0.05). Thus, while the protein and mRNA expression of ALDH1B1 suggests that it is a potential marker of colorectal tumors, its expression is independent of CRC stage and prognosis.
Collapse
Affiliation(s)
- Hejing Wang
- Experimental Centre, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Yanmeng Li
- Experimental Centre, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Donghu Zhou
- Experimental Centre, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Xiaojin Li
- Experimental Centre, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Siyu Jia
- Experimental Centre, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Saiping Qi
- Experimental Centre, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Jian Huang
- Experimental Centre, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
3
|
Guo X, Liu L, Zhang Q, Yang W, Zhang Y. E2F7 Transcriptionally Inhibits MicroRNA-199b Expression to Promote USP47, Thereby Enhancing Colon Cancer Tumor Stem Cell Activity and Promoting the Occurrence of Colon Cancer. Front Oncol 2021; 10:565449. [PMID: 33489876 PMCID: PMC7819137 DOI: 10.3389/fonc.2020.565449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
microRNAs (miRNAs) can modulate the expression level of genes in a post-transcription manner, which are closely related to growth and metastasis of colon cancer. Herein, we aimed to explore how miR-199b influences colon cancer and to characterize its underlying molecular mechanism associating with E2F transcription factor 7 (E2F7). Assays of RT-qPCR, Western blot, and immunohistochemistry were utilized to detect the expression of E2F7 in the tissue samples collected from 30 patients diagnosed with colon cancer. Flow analysis was utilized to detect the ratio of ALDH1+ and CD133+ colon cancer stem cells. The interaction between E2F7, miR-199b, USP47, and MAPK was identified by ChIP-Seq analysis, luciferase reporter, RNA pull-down, co-immunoprecipitation, as well as glutathione-S-transferase (GST) pull-down experiments. Based on the gain- and loss-of-function approaches, the cellular functions of colon cancer cells by the E2F7-regulated miR-199b/USP47/MAPK axis were assessed. It was identified that E2F7 are expressed highly in the collected colon cancer tissues. E2F7 silencing reduced the production of ALDH1+ and CD133+ colon cancer stem cells and antagonized the effects of 5-fluorouracil (5-FU) treatment. Besides, the silencing of E2F7 was observed to suppress the oxidative stress, proliferation, migration, as well as invasion of ALDH1+ cells in vitro and tumorigenesis of colon cancer cells in vivo. Our findings reveal the pro-oncogenic effect of E2F7 on colon cancer development, highlighting E2F7 as a novel target for therapeutic strategy for colon cancer.
Collapse
Affiliation(s)
- Xiong Guo
- Department of Colorectal and Anal Surgery, Hepatobiliary and Enteric Surgery Center, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Liu
- Hepatobiliary & Enteric Surgery Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Qi Zhang
- Hepatobiliary & Enteric Surgery Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Weiming Yang
- Hepatobiliary & Enteric Surgery Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Yang Zhang
- Department of Colorectal and Anal Surgery, Hepatobiliary and Enteric Surgery Center, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Neog Bora P, Baruah VJ, Borkotokey S, Gogoi L, Mahanta P, Sarmah A, Kumar R, Moretti S. Identifying the Salient Genes in Microarray Data: A Novel Game Theoretic Model for the Co-Expression Network. Diagnostics (Basel) 2020; 10:E586. [PMID: 32823765 PMCID: PMC7460294 DOI: 10.3390/diagnostics10080586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
Microarray techniques are used to generate a large amount of information on gene expression. This information can be statistically processed and analyzed to identify the genes useful for the diagnosis and prognosis of genetic diseases. Game theoretic tools are applied to analyze the gene expression data. Gene co-expression networks are increasingly used to explore the system-level functionality of genes, where the roles of the genes in building networks in addition to their independent activities are also considered. In this paper, we develop a novel microarray network game by constructing a gene co-expression network and defining a game on this network. The notion of the Link Relevance Index (LRI) for this network game is introduced and characterized. The LRI successfully identifies the relevant cancer biomarkers. It also enables identifying salient genes in the colon cancer dataset. Network games can more accurately describe the interactions among genes as their basic premises are to consider the interactions among players prescribed by a network structure. LRI presents a tool to identify the underlying salient genes involved in cancer or other metabolic syndromes.
Collapse
Affiliation(s)
- Papori Neog Bora
- Department of Mathematics, Dibrugarh University, Dibrugarh 786004, India;
| | - Vishwa Jyoti Baruah
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, India
| | - Surajit Borkotokey
- Department of Mathematics, Dibrugarh University, Dibrugarh 786004, India;
| | - Loyimee Gogoi
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Priyakshi Mahanta
- Centre for Computer Science and Applications, Dibrugarh University, Dibrugarh 786004, India; (P.M.); (A.S.)
| | - Ankumon Sarmah
- Centre for Computer Science and Applications, Dibrugarh University, Dibrugarh 786004, India; (P.M.); (A.S.)
| | - Rajnish Kumar
- Economics Group, Queen’s Management School, Queen’s University, Belfast BT9 5EE, UK
| | - Stefano Moretti
- Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, 75016 Paris, France;
| |
Collapse
|
5
|
Barbato L, Bocchetti M, Di Biase A, Regad T. Cancer Stem Cells and Targeting Strategies. Cells 2019; 8:cells8080926. [PMID: 31426611 PMCID: PMC6721823 DOI: 10.3390/cells8080926] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Chemoresistance is a major problem in cancer therapy as cancer cells develop mechanisms that counteract the effect of chemotherapeutic compounds, leading to relapse and the development of more aggressive cancers that contribute to poor prognosis and survival rates of treated patients. Cancer stem cells (CSCs) play a key role in this event. Apart from their slow proliferative property, CSCs have developed a range of cellular processes that involve drug efflux, drug enzymatic inactivation and other mechanisms. In addition, the microenvironment where CSCs evolve (CSC niche), effectively contributes to their role in cancer initiation, progression and chemoresistance. In the CSC niche, immune cells, mesenchymal stem cells (MSCs), endothelial cells and cancer associated fibroblasts (CAFs) contribute to the maintenance of CSC malignancy via the secretion of factors that promote cancer progression and resistance to chemotherapy. Due to these factors that hinder successful cancer therapies, CSCs are a subject of intense research that aims at better understanding of CSC behaviour and at developing efficient targeting therapies. In this review, we provide an overview of cancer stem cells, their role in cancer initiation, progression and chemoresistance, and discuss the progress that has been made in the development of CSC targeted therapies.
Collapse
Affiliation(s)
- Luisa Barbato
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Marco Bocchetti
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna Di Biase
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Tarik Regad
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
6
|
ATP-binding Cassette Transporters Substantially Reduce Estimates of ALDH-positive Cancer Cells based on Aldefluor and AldeRed588 Assays. Sci Rep 2019; 9:6462. [PMID: 31015586 PMCID: PMC6478741 DOI: 10.1038/s41598-019-42954-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
Aldehyde dehydrogenase (ALDH) assays measure the accumulated fluorescence of enzyme products. However, cancer cells frequently co-express ALDH and ATP-binding cassette (ABC) transporters, which might mediate efflux of ALDH assay reagents. We demonstrate expression of active multidrug resistance protein1 (MDR1), multidrug resistance-associated protein (MRP), and breast cancer resistance protein (BCRP) in CT26 cancer cells as well as expression of MRP and BCRP in HT29 cancer cells. Without transporter inhibition, only small portions of both cell types were estimated to be ALDH-positive based on Aldefluor and AldeRed588 assays. However, MK-571 (MRP inhibitor) and novobiocin (BCRP inhibitor) substantially increased the rate of ALDH-positive CT26 cells based on either Aldefluor or AldeRed588 assays. Verapamil (MDR inhibitor) did not influence assay results. MK-571 also substantially increased the rate of ALDH-positive HT29 cells. Limiting dilution assays demonstrated greater numbers of tumor-spheres formed by Aldefluor-positive compared to -negative CT26 cells selected in the presence of MK-571 or novobiocin but not in their absence. These results reveal that Aldefluor and AldeRed588 products are efficient substrates for MRP- and BCRP-mediated efflux and substantially reduce estimated ALDH positivity rates in cancer cells. These findings demonstrate that complete blockade of these transporters is important to ensure accurate ALDH assay results and to develop newer assay techniques.
Collapse
|
7
|
Han S, Huang T, Wu X, Wang X, Li W, Liu S, Yang W, Shi Q, Li H, Shi K, Hou F. Prognostic value of ALDH1 and Nestin in advanced cancer: a systematic meta-analysis with trial sequential analysis. Ther Adv Med Oncol 2019; 11:1758835919830831. [PMID: 30833990 PMCID: PMC6393950 DOI: 10.1177/1758835919830831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/28/2018] [Indexed: 12/24/2022] Open
Abstract
Background Novel prognostic markers and therapeutic targets for advanced cancer are urgently needed. This report with trial sequential analysis (TSA) was first conducted to provide robust estimates of the correlation between aldehyde dehydrogenase 1 (ALDH1) and Nestin and clinical outcomes of advanced cancer patients. Methods Hazard ratios (HRs) with 95% confidence intervals (CIs) were summarized for overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), cancer-specific survival (CSS), relapse/recurrence-free survival (RFS), and metastasis-free survival (MFS) from multivariable analysis. TSA was performed to control for random errors. Results A total of 20 studies with 2050 patients (ALDH1: 15 studies with 1557 patients and Nestin: 5 studies with 493 patients) were identified. ALDH1 (HR = 2.28, p < 0.001) and Nestin (HR = 2.39, p < 0.001) were associated with a worse OS, as confirmed by TSA. Nestin positivity was linked to a poor PFS (HR = 2.08, p < 0.001), but ALDH1 was not linked to DFS, RFS, MFS, or PFS, and TSA showed that more studies were needed. Subgroup analysis by tumor type indicated that ALDH1 positivity may be associated with shorter OS in breast, head and neck cancers, but there was no association with colorectal cancer. Subgroup analysis by study source showed that ALDH1 positivity was correlated with a worse OS for Japanese (HR = 1.94, p = 0.002) and European patients (HR = 4.15, p < 0.001), but there was no association for Chinese patients. Subgroup analysis by survival rate showed that ALDH1 positivity correlated with poor OS at ⩾ 5 years (HR = 2.33, p < 0.001) or 10 years (HR = 1.76, p = 0.038). Conclusions ALDH1 may be more valuable as an effective therapeutic target than Nestin for improving the long-term survival rate of advanced cancer. Additional prospective clinical trials are needed across different cancer types.
Collapse
Affiliation(s)
- Susu Han
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Road, Shanghai 200071, People's Republic of China
| | - Tao Huang
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China
| | - Xing Wu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiyu Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wen Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shanshan Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wei Yang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Qi Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hongjia Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Kunhe Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Road, Shanghai 200071, People's Republic of China
| |
Collapse
|
8
|
ALDH1A1 expression is associated with poor differentiation, 'right-sidedness' and poor survival in human colorectal cancer. PLoS One 2018; 13:e0205536. [PMID: 30308036 PMCID: PMC6181398 DOI: 10.1371/journal.pone.0205536] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
Background Aldehyde dehydrogenase 1A1 (ALDH1A1) encodes an enzyme that oxidizes aldehydes to their corresponding carboxylic acids. In colorectal cancer ALDH1A1 marks cancer stem cells and plays putative roles in tumor progression and drug resistance. However, the potential value of ALDH1A1 as a diagnostic marker or target for therapy remains unclear. Here, we have analyzed ALDH1A1 mRNA and protein levels in relation to clinical, histopathological and molecular tumor features in large series of human colorectal cancer. Methods ALDH1A1 protein levels were determined by immunohistochemistry in a series of primary colorectal tumors and their corresponding liver metastases (n = 158). ALDH1A1 mRNA levels were analyzed in several large patient cohorts of colorectal cancer. ALDH1A1 mRNA and protein levels were then related to overall survival and to clinical, histopathological and molecular tumor features. Results High levels of ALDH1A1 were associated with a poorly differentiated histology and a right-sided tumor location, but not to a mesenchymal-like molecular subtype. Liver metastases contained significantly higher levels of ALDH1A1 compared to the corresponding primary tumors. Radio- and/or chemotherapy prior to tumor resection was associated with increased ALDH1A1 levels regardless of the molecular subtype. Finally, ALDH1A1 protein expression in primary tumors and metastases correlated with shorter overall survival. Conclusions ALDH1A1 expression is associated with features of poor prognosis, including a poorly differentiated histology and ‘right-sidedness’ of the primary tumor, and with shorter overall survival. ALDH1A1 is also highly expressed in therapy-surviving tumors and in liver metastases. These results warrant further research into the potential value of targeting ALDH1A1 in order to improve the efficacy of standard treatment and thereby preventing tumor recurrence.
Collapse
|
9
|
Wahab SR, Islam F, Gopalan V, Lam AKY. The Identifications and Clinical Implications of Cancer Stem Cells in Colorectal Cancer. Clin Colorectal Cancer 2017; 16:93-102. [DOI: 10.1016/j.clcc.2017.01.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/16/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022]
|
10
|
Chiou GY, Yang TW, Huang CC, Tang CY, Yen JY, Tsai MC, Chen HY, Fadhilah N, Lin CC, Jong YJ. Musashi-1 promotes a cancer stem cell lineage and chemoresistance in colorectal cancer cells. Sci Rep 2017; 7:2172. [PMID: 28526879 PMCID: PMC5438397 DOI: 10.1038/s41598-017-02057-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancers (CRCs) are a critical health issue worldwide. Cancer stem cell (CSC) lineages are associated with tumour transformation, progression, and malignant transformation. However, how lineages are transformed and how chemoresistance is acquired by CRCs remain largely unknown. In this report, we demonstrated that the RNA-binding protein Musashi-1 enhanced the development of CD44+ colorectal CSCs and triggered the formation of anti-apoptotic stress granules (SGs). Our results indicated that CD44+ CSC lineage-specific induction of tumour malignancies was controlled by Musashi-1. In addition, Musashi-1 formed SGs when CRC cell lines were treated with 5-fluorouracil. The C-terminal domain of Musashi-1 was critical for recruitment of Musashi-1 into SGs. Intracellular Musashi-1 SGs enhanced the chemoresistance of CRCs. Analysis of clinical CRC samples indicated that Musashi-1 expression was prominent in CRC stage IIA and IIB. In summary, we demonstrated that Musashi-1, a stemness gene, is a critical modulator that promotes the development of CD44+ colorectal CSCs and also enhances CRC chemoresistance via formation of SGs. Our findings elucidated a novel mechanism of CRC chemoresistance through increased anti-apoptotic effects via Musashi-1-associated SGs.
Collapse
Affiliation(s)
- Guang-Yuh Chiou
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Tzu-Wei Yang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Chou Huang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Colon and Rectum, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Ying Tang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Jung-Yi Yen
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Chang Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsuan-Yi Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Nurul Fadhilah
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chun-Che Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan. .,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Yuh-Jyh Jong
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan. .,Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Departments of Paediatrics and Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Yan L, Cao R, Liu Y, Wang L, Pan B, Lv X, Jiao H, Zhuang Q, Sun X, Xiao R. MiR-21-5p Links Epithelial-Mesenchymal Transition Phenotype with Stem-Like Cell Signatures via AKT Signaling in Keloid Keratinocytes. Sci Rep 2016; 6:28281. [PMID: 27596120 PMCID: PMC5011940 DOI: 10.1038/srep28281] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/31/2016] [Indexed: 12/29/2022] Open
Abstract
Keloid is the abnormal wound healing puzzled by the aggressive growth and high recurrence rate due to its unrevealed key pathogenic mechanism. MicroRNAs contribute to a series of biological processes including epithelial-mesenchymal transition (EMT) and cells stemness involved in fibrotic disease. Here, using microRNAs microarray analysis we found mir-21-5p was significantly up-regulated in keloid epidermis. To investigate the role of miR-21-5p in keloid pathogenesis, we transfected miR-21-5p mimic or inhibitor in keloid keratinocytes and examined the abilities of cell proliferation, apoptosis, migration and invasion, the expressions of EMT-related markers vimentin and E-cadherin and stem-like cells-associated markers CD44 and ALDH1, and the involvement of PTEN and the signaling of AKT and ERK. Our results demonstrated that up-regulation or knockdown of miR-21-5p significantly increased or decreased the migration, invasion and sphere-forming abilities of keloid keratinocytes, and the phenotype of EMT and cells stemness were enhanced or reduced as well. Furthermore, PTEN and p-AKT were shown to participate in the regulation of miR-21-5p on EMT phenotypes and stemness signatures of keloid keratinocytes, which might account for the invasion and recurrence of keloids. This molecular mechanism of miR-21-5p on keloid keratinocytes linked EMT with cells stemness and implicated novel therapeutic targets for keloids.
Collapse
Affiliation(s)
- Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - Rui Cao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - YuanBo Liu
- Extremities Plastic and Reconstructive Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - LianZhao Wang
- Comprehensive Treatment Center of Scar, Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - Bo Pan
- Auricular Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - XiaoYan Lv
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - Hu Jiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - Qiang Zhuang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - XueJian Sun
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
12
|
Abe S, Yamamoto K, Kurata M, Abe-Suzuki S, Horii R, Akiyama F, Kitagawa M. Targeting MCM2 function as a novel strategy for the treatment of highly malignant breast tumors. Oncotarget 2016; 6:34892-909. [PMID: 26430873 PMCID: PMC4741497 DOI: 10.18632/oncotarget.5408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/18/2015] [Indexed: 12/23/2022] Open
Abstract
Highly malignant tumors express high levels of the minichromosome maintenance 2 (MCM2) protein, which is associated with advanced tumor grade, advanced stage, and poor prognosis. In a previous study, we showed that Friend leukemia virus (FLV) envelope protein gp70 bound MCM2, impaired its nuclear translocation, and enhanced DNA-damage-induced apoptosis in FLV-infected hematopoietic cells when the cells expressed high levels of MCM2. Here, we show that MCM2 is highly expressed in clinical samples of invasive carcinoma of the breast, especially triple-negative breast cancer (TNBC), and in cancer stem cell (CSC) marker-positive breast cancer cells. To generate a cancer therapy model using gp70, we introduced the gp70 protein into the cytoplasm of murine breast cancer cells that express high levels of MCM2 by conjugating the protein transduction domain (PTD) of Hph-1 to gp70 (Hph- 1-gp70). Hph-1-gp70 was successfully transduced into the cytoplasm of breast cancer cells. The transduced protein enhanced the DNA damage-induced apoptosis of cancer cells in vitro and in vivo. Therefore, an MCM2-targeted strategy using Hph-1-gp70 treatment to induce DNA damage might be a successful therapy for highly malignant breast cancers such as TNBC and for the eradication of CSC-like cells from breast cancer tissue.
Collapse
Affiliation(s)
- Shinya Abe
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiho Abe-Suzuki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rie Horii
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Futoshi Akiyama
- Department of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Same difference: A pilot study of cyclin D1, bcl-2, AMACR, and ALDH-1 identifies significant differences in expression between primary colon adenocarcinoma and its metastases. Pathol Res Pract 2016; 212:995-1003. [PMID: 27623206 DOI: 10.1016/j.prp.2016.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 11/21/2022]
Abstract
Tumor heterogeneity implies the possibility of significantly different expression of key pathways between primary and metastatic clones. Colon adenocarcinoma is one of the few tumors where current practice includes resection of primary and isolated organ metastases simultaneously without neoadjuvant therapy. We performed a pilot study on 28 cases of colon adenocarcinoma resected simultaneously with metastases in patients with no history of neoadjuvant therapy. We assayed matched primary and metastatic tumors from each patient with common diagnostic antibodies to Bcl-2, Cyclin D1, AMACR, and ALDH-1 by immunohistochemistry with semi-quantitative interpretation on archived formalin fixed, paraffin embedded samples. We were powered for large, consistent differences between primary and metastatic expression, and found 21 of 28 had a significant difference in expression of at least one of the four proteins, accounting for multiplicity of testing. Cyclin D1 had significantly more cases with differential metastatic:primary expression than would be expected by chance alone (p-value 0.0043), favoring higher expression in the metastatic sample. Bcl-2 and ALDH-1 had trends in this direction (p-value 0.078 each). Proportionately more cases with significant differences were identified when a liver metastasis was tested. We conclude differences in expression between metastatic and primary colon adenocarcinoma within the same patient exist, and may have therapeutic and biomarker testing consequences.
Collapse
|
14
|
Fender AW, Nutter JM, Fitzgerald TL, Bertrand FE, Sigounas G. Notch-1 promotes stemness and epithelial to mesenchymal transition in colorectal cancer. J Cell Biochem 2016; 116:2517-27. [PMID: 25914224 DOI: 10.1002/jcb.25196] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/14/2015] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death in the United States, resulting in an average of 50,000 deaths per year. Surgery and combination chemotherapy comprise current treatment strategies. However, curative options are limited if surgery and chemotherapy are unsuccessful. Several studies have indicated that CRC aggressiveness and potential for metastatic spread are associated with the acquisition of stem cell like properties. The Notch-1 receptor and its cognate signaling pathway is well known for controlling cell fate decisions and stem-cell phenotypes. Alterations in Notch receptors and Notch signaling has been reported for some colon cancers. Herein, we examine a potential role for Notch-1 signaling in CRC. In CRC patient samples, Notch-1 expression was increased in colon tumor tissue as compared with normal colon tissue. Retroviral transduction of constitutively active Notch-1 (ICN1) into the colon tumor cell line HCT-116 resulted in increased expression of the EMT/stemness associated proteins CD44, Slug, Smad-3, and induction of Jagged-1 expression. These changes in ICN1 expressing cells were accompanied by increased migration and increased anchorage independent growth by 2.5-fold and 23%, respectively. Experiments with the pan-Notch inhibitor DAPT, and soluble Jagged-1-Fc protein provided evidence that Notch-1 signaling activates CD44, Slug, and Smad-3 via a cascade of other Notch-receptors through induction of Jagged-1 expression. These data indicate a key role for Notch signaling in the phenotype of CRC and suggest that targeting of Notch signaling may be of therapeutic value in colon cancers.
Collapse
Affiliation(s)
- Alexander W Fender
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina.,Department of Oncology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Jennifer M Nutter
- Department of Oncology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Fred E Bertrand
- Department of Oncology, Brody School of Medicine, East Carolina University, Greenville, North Carolina.,Department of Clinical and Diagnostic Sciences, Department of Nutrition Sciences, School of Health Professions, University of Alabama, Birmingham, Alabama
| | - George Sigounas
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina.,Department of Oncology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
15
|
Chappell WH, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Terrian D, Steelman LS, McCubrey JA. Novel roles of androgen receptor, epidermal growth factor receptor, TP53, regulatory RNAs, NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, and matrix metalloproteinase-9 in prostate cancer and prostate cancer stem cells. Adv Biol Regul 2015; 60:64-87. [PMID: 26525204 DOI: 10.1016/j.jbior.2015.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022]
Abstract
Approximately one in six men will be diagnosed with some form of prostate cancer in their lifetime. Over 250,000 men worldwide die annually due to complications from prostate cancer. While advancements in prostate cancer screening and therapies have helped in lowering this statistic, better tests and more effective therapies are still needed. This review will summarize the novel roles of the androgen receptor (AR), epidermal growth factor receptor (EGFR), the EGFRvIII variant, TP53, long-non-coding RNAs (lncRNAs), microRNAs (miRs), NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, (NGAL), matrix metalloproteinase-9 (MMP-9), the tumor microenvironment and cancer stem cells (CSC) have on the diagnosis, development and treatment of prostate cancer.
Collapse
Affiliation(s)
- William H Chappell
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - David Terrian
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
16
|
Cancer stem cells in human digestive tract malignancies. Tumour Biol 2015; 37:7-21. [DOI: 10.1007/s13277-015-4155-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022] Open
|
17
|
Rodriguez-Torres M, Allan AL. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin Exp Metastasis 2015; 33:97-113. [PMID: 26445849 PMCID: PMC4740561 DOI: 10.1007/s10585-015-9755-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022]
Abstract
There is accumulating evidence indicating that aldehyde dehydrogenase (ALDH) activity selects for cancer cells with increased aggressiveness, capacity for sustained proliferation, and plasticity in primary tumors. However, emerging data also suggests an important mechanistic role for the ALDH family of isoenzymes in the metastatic activity of tumor cells. Recent studies indicate that ALDH correlates with either increased or decreased metastatic capacity in a cellular context-dependent manner. Importantly, it appears that different ALDH isoforms support increased metastatic capacity in different tumor types. This review assesses the potential of ALDH as biological marker and mechanistic mediator of metastasis in solid tumors. In many malignancies, most notably in breast cancer, ALDH activity and expression appears to be a promising marker and potential therapeutic target for treating metastasis in the clinical setting.
Collapse
Affiliation(s)
- Mauricio Rodriguez-Torres
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada. .,Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Lawson Health Research Institute, London, ON, Canada. .,London Regional Cancer Program, Room A4-132, 790 Commissioners Road East, London, ON, N6A 4L6, Canada.
| |
Collapse
|
18
|
Aldehyde Dehydragenase 1 and Nodal as Significant Prognostic Markers in Colorectal Cancer. Pathol Oncol Res 2015; 22:121-7. [PMID: 26358078 DOI: 10.1007/s12253-015-9984-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/03/2015] [Indexed: 01/07/2023]
Abstract
This study aimed to analyze prognostic significance of aldehyde dehydragenase 1 (ALDH1) and Nodal expression in patients with colorectal cancer. ALDH1 and Nodal expressions were observed based on the immunohistochemistry staining from 108 colorectal cancer patients. Scores were given to the staining intensity and percentage of positive cells, and sum of two scores for each case was used to define the groups of ALDH1 and Nodal. We also investigated the protein and mRNA levels of ALDH1 and Nodal by Western blot and qRT-PCR assays. The results were analyzed with the clinicopathologic parameters of these patients. The results indicated that expressions of ALDH1 and Nodal were significantly correlated with the differentiation degree, metastasis, number of tumor positive lymph nodes and AJCC stage. ALDH1 was inclined to express more in the worse differentiated degrees, lymph node metastasis, and worse AJCC stage of colorectal cancer patients. And the expression of Nodal was inversely compared with ALDH1.While the expression of ALDH1 was inversely correlated with the Nodal (r = -0.709, P < 0.01).
Collapse
|
19
|
Chen J, Xia Q, Jiang B, Chang W, Yuan W, Ma Z, Liu Z, Shu X. Prognostic Value of Cancer Stem Cell Marker ALDH1 Expression in Colorectal Cancer: A Systematic Review and Meta-Analysis. PLoS One 2015; 10:e0145164. [PMID: 26682730 PMCID: PMC4686173 DOI: 10.1371/journal.pone.0145164] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Many studies have indicated the prognostic and clinicopathological value of aldehyde dehydrogenase 1 (ALDH1) in colorectal cancer (CRC) patients still remains controversial. Thus we performed this study to clarify the relationship between high ALDH1 expression in CRC and its impact on survival and clinicopathological features. METHODS Publications for relevant studies in Pubmed, the Cochrane Library, Embase, and China National Knowledge Infrastructure (CNKI) through April 2015 were identified. Only articles describing ALDH1 antigen with immunohistochemistry in CRC were included. The software RevMan 5.1 was used to analyze the outcomes, including 5-year overall survival (OS), disease-free survival (DFS) and clinicopathological features. RESULTS 9 studies with 1203 patients satisfying the criteria were included. The overall rate of high ALDH1 expression was 46.5% by immunohistochemical staining. High ALDH1 expression as an independent prognostic factor was significantly associated with the 5-year OS and DFS (OR = 0.42, 95%CI: 0.26-0.68, P = 0.0004; OR = 0.38, 95%CI: 0.24-0.59, P < 0.0001, respectively). High ALDH1 expression was highly correlated with the tumor (T) stage (T3 + T4 vs. T1 + T2; OR = 2.16, 95%CI: 1.09-4.28, P = 0.03), lymph node (N) stage (N1 + N2 vs. N0; OR = 1.8; 95%CI: 1.17-2.79, P = 0.008), and tumor differentiation (G3 vs. G1 + G2; OR = 1.88; 95%CI: 1.07-3.30, P = 0.03). However, high ALDH1 expression was not significantly correlated with the patient age (>60 years old vs. <60 years old; OR = 1.11, 95%CI: 0.63-1.94, P = 0.72). CONCLUSIONS High ALDH1 expression indicates a poor prognosis in CRC patients. Moreover, high ALDH1 expression correlates with the T stage, N stage, and tumor differentiation, but not with age.
Collapse
Affiliation(s)
- Jinhuang Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghua Xia
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weilong Chang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzheng Yuan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyi Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|