1
|
Zhou FQ. Advantages of pyruvate-based fluids in preclinical shock resuscitation-A narrative review. Front Physiol 2022; 13:1027440. [PMID: 36505043 PMCID: PMC9732738 DOI: 10.3389/fphys.2022.1027440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
This review focuses on the innate beneficial effects of sodium pyruvate-based fluids, including pyruvate in intravenous solutions, oral rehydration solutions, and peritoneal dialysis solutions, on shock resuscitation with various animal models relative to current commercial fluids over the last two decades. Due to its superior pharmacological properties, pyruvate effectively sustains cytosolic glycolytic pathways and mitochondrial oxidative phosphorylation by restoration of redox potentials and reactivation of pyruvate dehydrogenase in hypoxia, even anoxia, and diabetes, reversing the Warburg effect and diabetic glucometabolic aberration. Pyruvate has been demonstrated to protect against multiorgan dysfunction and metabolic disturbance in numerous preclinical studies with various pathogenic injuries. The unique features of pyruvate potential clinical benefits encompass to efficiently correct lethal lactic acidosis via metabolically rapid consumption of intracellular [H+] and robustly protect multiorgan metabolism and function, particularly visceral organs in addition to the heart and brain, significantly prolonging survival in various animal models. Pyruvate protection of red blood cell function and preservation of the partial pressure of arterial oxygen should be highly concerned in further studies. Pyruvate is much advantageous over existing anions such as acetate, bicarbonate, chloride, and lactate in commercial fluids. Pyruvate-based fluids act as a therapeutic agent without causing iatrogenic resuscitation injury in addition to being a volume expander, indicating a potential novel generation of resuscitation fluids, including crystalloids and colloids. Pyruvate-based fluids have an enormous potential appeal for clinicians who face the ongoing fluid debate to readily select as the first resuscitation fluid. Clinical trials with pyruvate-based fluids in shock resuscitation are urgently warranted.
Collapse
Affiliation(s)
- Fang-Qiang Zhou
- Independent Researcher, Las Vegas, NV, United States,Fresenius Medical Care, Chicago, IL, United States,*Correspondence: Fang-Qiang Zhou,
| |
Collapse
|
2
|
Zhou FQ. Pyruvate as a Potential Beneficial Anion in Resuscitation Fluids. Front Med (Lausanne) 2022; 9:905978. [PMID: 35991638 PMCID: PMC9382911 DOI: 10.3389/fmed.2022.905978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
There have been ongoing debates about resuscitation fluids because each of the current fluids has its own disadvantages. The debates essentially reflect an embarrassing clinical status quo that all fluids are not quite ideal in most clinical settings. Therefore, a novel fluid that overcomes the limitations of most fluids is necessary for most patients, particularly diabetic and older patients. Pyruvate is a natural potent antioxidant/nitrosative and anti-inflammatory agent. Exogenous pyruvate as an alkalizer can increase cellular hypoxia and anoxia tolerance with the preservation of classic glycolytic pathways and the reactivation of pyruvate dehydrogenase activity to promote oxidative metabolism and reverse the Warburg effect, robustly preventing and treating hypoxic lactic acidosis, which is one of the fatal complications in critically ill patients. In animal studies and clinical reports, pyruvate has been shown to play a protective role in multi-organ functions, especially the heart, brain, kidney, and intestine, demonstrating a great potential to improve patient survival. Pyruvate-enriched fluids including crystalloids and colloids and oral rehydration solution (ORS) may be ideal due to the unique beneficial properties of pyruvate relative to anions in contemporary existing fluids, such as acetate, bicarbonate, chloride, citrate, lactate, and even malate. Preclinical studies have demonstrated that pyruvate-enriched saline is superior to 0.9% sodium chloride. Moreover, pyruvate-enriched Ringer’s solution is advantageous over lactated Ringer’s solution. Furthermore, pyruvate as a carrier in colloids, such as hydroxyethyl starch 130/0.4, is more beneficial than its commercial counterparts. Similarly, pyruvate-enriched ORS is more favorable than WHO-ORS in organ protection and shock resuscitation. It is critical that pay attention first to improving abnormal saline with pyruvate for ICU patients. Many clinical trials with a high dose of intravenous or oral pyruvate were conducted over the past half century, and results indicated its effectiveness and safety in humans. The long-term instability of pyruvate aqueous solutions and para-pyruvate cytotoxicity is not a barrier to the pharmaceutical manufacturing of pyruvate-enriched fluids for ICU patients. Clinical trials with sodium pyruvate-enriched solutions are urgently warranted.
Collapse
|
3
|
Wang XR, Du HB, Wang HH, Zhang LM, Si YH, Zhang H, Zhao ZG. Mesenteric Lymph Drainage Improves Cardiac Papillary Contractility and Calcium Sensitivity in Rats with Hemorrhagic Shock. J Surg Res 2021; 266:245-253. [PMID: 34034059 DOI: 10.1016/j.jss.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Myocardial dysfunction is an important adverse factor of hemorrhagic shock that induces refractory hypotension, and post-hemorrhagic shock mesenteric lymph (PHSML) return is involved in this adverse effect. This study investigated whether mesenteric lymph drainage (MLD) improves PHSML return-induced cardiac contractile dysfunction via the restoration of cardiomyocyte calcium sensitivity. MATERIALS AND METHODS A hemorrhage shock model was established by using a controlled hemorrhage through the femoral artery that maintained a mean arterial pressure of 40 ± 2 mmHg for 3 h. MLD and mesenteric lymph duct ligation (MLDL) were performed from 1 to 3 h during hypotension. The papillary muscles of the heart were collected for measurement of calmodulin expression and for determining contractile responses to either isoprenaline or calcium. RESULTS The results showed that either MLD or MLDL reversed the hemorrhagic shock-induced downregulation of calmodulin expression, a marker protein of cardiomyocyte calcium sensitization, in papillary muscles. MLD also improved the decreased contractile response and ±df/dt of the papillary muscle strip to gradient isoprenaline or calcium caused by hemorrhagic shock. CONCLUSION These findings indicate that increased cardiac contractibility may be associated with the restoration of calcium sensitivity produced by PHSML drainage.
Collapse
Affiliation(s)
- Xiao-Rong Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China
| | - Hui-Bo Du
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China
| | - Huai-Huai Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China; The Second Affiliated Hospital, Hebei North University, Zhangjiakou, China
| | - Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China
| | - Yong-Hua Si
- Department of Pediatrics, Cangzhou City People's Hospital, Cangzhou, China
| | - Hong Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Hebei Medical University & Hebei North University, Shijiazhuang & Zhangjiakou, China.
| |
Collapse
|
4
|
Zhang XM, Deng H, Tong JD, Wang YZ, Ning XC, Yang XH, Zhou FQ, Jin HM. Pyruvate-Enriched Oral Rehydration Solution Improves Glucometabolic Disorders in the Kidneys of Diabetic db/db Mice. J Diabetes Res 2020; 2020:2817972. [PMID: 33062708 PMCID: PMC7533008 DOI: 10.1155/2020/2817972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022] Open
Abstract
Diabetes is prevalent worldwide, but ideally intensive therapeutic strategy in clinical diabetes and diabetic nephropathy (DN) is still lack. Pyruvate is protective from glucometabolic disturbances and kidney dysfunction in various pathogenic insults. Present studies focused on oral pyruvate effects on diabetes status and DN with 0.35% pyruvate in pyruvate-enriched oral rehydration solution (Pyr-ORS) and 1% pyruvate as drinking water for 8 weeks, using the model of diabetic db/db mice. Both Pyr-ORS and 1% pyruvate showed comparable therapeutic effectiveness with controls of body weight and blood sugar, increases of blood insulin levels, and improvement of renal function and pathological changes. Aberrant key enzyme activities in glucometabolic pathways, AR, PK, and PDK/PDH, were also restored; indexes of oxidative stress and inflammation, NAD+/NADH ratio, and AGEs in the kidneys were mostly significantly preserved after pyruvate treatments. We concluded that oral pyruvate delayed DN progression in db/db mice and the modified Pyr-ORS formula might be an ideal novel therapeutic drink in clinical prevention and treatment of type 2 diabetes and DN.
Collapse
Affiliation(s)
- Xiao Meng Zhang
- Department of Nephrology, Pudong Hospital, Shanghai Medical School, Fudan University, 2800 Gong Wei Road, Shanghai, China
| | - Hao Deng
- Department of Nephrology, Pudong Hospital, Shanghai Medical School, Fudan University, 2800 Gong Wei Road, Shanghai, China
| | - Jin Dong Tong
- Division of Vascular surgery, Pudong Hospital, Shanghai Medical School, Fudan University, 2800 Gong Wei Road, Shanghai, China
| | - Yi Zhen Wang
- Department of Clinical Medicine, Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao, Shandong, China
| | - Xu Chao Ning
- Department of Clinical Medicine, Affiliated Hospital of Qingdao University, 16 Jiang Su Road, Qingdao, Shandong, China
| | - Xiu Hong Yang
- Department of Nephrology, Pudong Hospital, Shanghai Medical School, Fudan University, 2800 Gong Wei Road, Shanghai, China
| | - Fang Qiang Zhou
- Shanghai Sandai Pharmaceutical R&D Co., Ltd., Pudong, Shanghai, China
| | - Hui Min Jin
- Department of Nephrology, Pudong Hospital, Shanghai Medical School, Fudan University, 2800 Gong Wei Road, Shanghai, China
| |
Collapse
|
5
|
Wang Y, Huang Y, Yang J, Zhou FQ, Zhao L, Zhou H. Pyruvate is a prospective alkalizer to correct hypoxic lactic acidosis. Mil Med Res 2018; 5:13. [PMID: 29695298 PMCID: PMC5918562 DOI: 10.1186/s40779-018-0160-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/05/2018] [Indexed: 12/12/2022] Open
Abstract
Type A lactic acidosis resulted from hypoxic mitochondrial dysfunction is an independent predictor of mortality for critically ill patients. However, current therapeutic agents are still in shortage and can even be harmful. This paper reviewed data regarding lactic acidosis treatment and recommended that pyruvate might be a potential alkalizer to correct type A lactic acidosis in future clinical practice. Pyruvate is a key energy metabolic substrate and a pyruvate dehydrogenase (PDH) activator with several unique beneficial biological properties, including anti-oxidant and anti-inflammatory effects and the ability to activate the hypoxia-inducible factor-1 (HIF-1α) - erythropoietin (EPO) signal pathway. Pyruvate preserves glucose metabolism and cellular energetics better than bicarbonate, lactate, acetate and malate in the efficient correction of hypoxic lactic acidosis and shows few side effects. Therefore, application of pyruvate may be promising and safe as a novel therapeutic strategy in hypoxic lactic acidosis correction accompanied with multi-organ protection in critical care patients.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Ya Huang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China.,Department of Transfusion, Hainan Branch of PLA General Hospital, Sanya, 572013, Hainan, China
| | - Jing Yang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Fang-Qiang Zhou
- Fresenius Dialysis Centers at Chicago, Rolling Meadows Facility, Chicago, IL, 60008, USA.,Shanghai Sandai Pharmaceutical R&D Co, Shanghai, 201203, China
| | - Lian Zhao
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Hong Zhou
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
6
|
Liu R, Wang SM, Li ZY, Yu W, Zhang HP, Zhou FQ. Pyruvate in reduced osmolarity oral rehydration salt corrected lactic acidosis in sever scald rats. J Surg Res 2018; 226:173-180. [PMID: 29661284 DOI: 10.1016/j.jss.2018.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/10/2017] [Accepted: 01/12/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND A novel pyruvate-based oral rehydration salt (Pyr-ORS) was demonstrated of superiority over bicarbonate- or citrate-based one to preserve organ function and correct lactic acidosis in rehydration of lethal shock in animals. This study further compared these effects between low-osmolar Pyr-ORS and equimolar citrate-based counterpart. METHODS Eighty rats, using a fatal burn shock model, were randomized into four groups (two subgroups per group: n = 10): the sham group (group SR), Pyr-ORS group (group PR), WHO-ORS III group (group CR), and no rehydration group. ORS was delivered by manual gavage during 24 h following burns. Oral administration consisted of half of counted volume in the initial 8 h plus the rest in the later 16 h. Systemic hemodynamics, visceral organ surface blood flow, organ function, and metabolic acidosis were determined at 8 h and 24 h after burn. Another set of rats with identical surgical procedures without tests was observed for survival. RESULTS Survival was markedly improved in the groups PR and CR; the former showed a higher survival rate than the latter at 24 h (40% versus 20%, P < 0.05). Systemic hemodynamics, visceral blood flow, and function of heart, liver, and kidney were greatly restored in group PR, compared with group CR (all P < 0.05). Hypoxic lactic acidosis was efficiently reversed in group PR, instead of group CR, (pH 7.36 versus 7.11, base excess 2.1 versus -9.1 mmol/L, lactate 4.28 versus 8.18 mmol/L; all P < 0.05) at 24 h after injury. CONCLUSIONS Pyruvate was advantageous over citrate in low-osmolar ORS for protection of organs and survival; pyruvate, but not citrate, in the ORS corrected hypoxic lactic acidosis in rats subjected to lethal burn shock in 24 h.
Collapse
Affiliation(s)
- Rui Liu
- Department of Burns, Heilongjiang Provincial Hospital, Harbin, China
| | - Shu-Ming Wang
- Department of Emergency Medicine, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Zong-Yu Li
- Department of Burns, The Fifth Hospital of Harbin, Harbin, China. kysl--@163.com
| | - Wen Yu
- Department of Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui-Ping Zhang
- Laboratory for Shock and Multiple Organ Dysfunction of Burns Institute, Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury and Repair Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Fang-Qiang Zhou
- Shanghai Sandai Pharmaceutical R&D Co, Ltd, Pudong, Shanghai, China.
| |
Collapse
|
7
|
Hu S, Dai YL, Gao MJ, Wang XN, Wang HB, Dou YQ, Bai XD, Zhou FQ. Pyruvate as a novel carrier of hydroxyethyl starch 130/0.4 may protect kidney in rats subjected to severe burns. J Surg Res 2018; 225:166-174. [PMID: 29605028 DOI: 10.1016/j.jss.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/09/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The carrier of hydroxyethyl starch (HES) may play a critical role in kidney injury in fluid resuscitation. This study aimed mainly to compare effects of pyruvate-enriched saline with normal saline (NS) and acetate Ringer's (AR) solution as a carrier in HES130/0.4 on kidney function in rats subjected to severe burns. METHODS Using a lethal burn model, 140 rats were randomly allocated in seven groups (n = 20): sham group (group S); no fluid after burn (group N); burn resuscitated with NS (group NS); burn resuscitated with pyruvate saline (group PS); burn resuscitated with AR plus pyruvate-HES (group SP); burn resuscitated with AR plus acetate-HES (group SA), and burn resuscitated with AR plus NS-HES (group SN). A low volume (18.75 mL·kg-1 during 12 h) of HES130/0.4 was infused with the ratio of 1:1 to crystalloids. Renal surface blood flow, blood creatinine and blood urea nitrogen, early sensitive indicators of kidney function: alpha-1 microglobulin, cystatin-C, and neutrophil gelatinase-associated lipocalin in blood and urine, and kidney tissue water contents were determined. Renal histopathological alterations with Paller scores were also measured at 8 h and 24 h after burn (n = 10), respectively. RESULTS The results showed in a comparable manner that group SP was the best in three HES groups and group PS was superior to group NS in renal preservation; group SP appeared significantly beneficial compared with group PS in renal surface blood flow, cystatin-C, neutrophil gelatinase-associated lipocalin, water contents, and Paller scores at 8-h or both time points after burn, respectively (all P < 0.05). CONCLUSIONS The carrier of HES130/0.4 played a crucial role in kidney injury in fluid resuscitation of rats subjected to severe burns. Pyruvate-enriched HES130/0.4 was superior and HES130/0.4, per se, might be not renocytotoxic, but renoprotective. Further studies are warranted.
Collapse
Affiliation(s)
- Sen Hu
- Laboratory for Shock and Multiple Organ Dysfunction of Burns Institute, Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury and Repair Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Yue-Long Dai
- Chinese People's Armed Police Forces Academy, Langfang, Hebei, China
| | - Ming-Juan Gao
- Department of Burn and Plastic Surgery, The General Hospital of Chinese People's Armed Police Forces, Beijing, China
| | - Xiao-Na Wang
- Department of Burn and Plastic Surgery, The General Hospital of Chinese People's Armed Police Forces, Beijing, China
| | - Hai-Bin Wang
- Clinical Laboratory, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Yong-Qi Dou
- Department of TCM, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Dong Bai
- Department of Burn and Plastic Surgery, The General Hospital of Chinese People's Armed Police Forces, Beijing, China.
| | - Fang-Qiang Zhou
- Shanghai Sandai Pharmaceutical R&D Co., Ltd., Pudong, Shanghai, China; Newton, Massachusetts.
| |
Collapse
|
8
|
Zhang H, Ren NT, Zhou FQ, Li J, Lei W, Liu N, Bi L, Wu ZX, Zhang R, Zhang YG, Cui G. Effects of Hindlimb Unweighting on MBP and GDNF Expression and Morphology in Rat Dorsal Root Ganglia Neurons. Neurochem Res 2016; 41:2433-42. [DOI: 10.1007/s11064-016-1956-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/29/2016] [Accepted: 05/11/2016] [Indexed: 12/17/2022]
|
9
|
Liu R, Hu XH, Wang SM, Guo SJ, Li ZY, Bai XD, Zhou FQ, Hu S. Pyruvate in oral rehydration salt improves hemodynamics, vasopermeability and survival after burns in dogs. Burns 2016; 42:797-806. [PMID: 27130433 DOI: 10.1016/j.burns.2016.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/03/2015] [Accepted: 01/05/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND To investigate whether pyruvate-enriched oral rehydration solution (Pyr-ORS), compared with citrate-enriched ORS (Cit-ORS), improves hemodynamics and organ function by alleviating vasopermeability and plasma volume loss during intra-gastric fluid rehydration in dogs with severe burn. METHODS Forty dogs subjected to severe burn were randomly divided into four groups (n=10): two oral rehydrated groups with Pyr-ORS and Cit-ORS (group PR and group CR), respectively, according to the Parkland formula during the first 24h after burns. Other two groups were the intravenous (IV) resuscitation (group VR) with lactated Ringer's solution with the same dosage and no fluid rehydration (group NR). During the next 24h, all groups received the same IV infusion. The hemodynamics, plasma volume, vasopermeability and water contents and function of various organs were determined. Plasma levels of vascular endothelial growth factor (VEGF) and platelet activating factor (PAF) were detected by ELISA. RESULTS Hemodynamics parameters were significantly improved in group PR superior to group CR after burns. Levels of VEGF and PAF were significantly lower in group PR than in group CR. Organ function parameters were also greatly preserved in group PR, relative to groups CR and NR. Lactic acidosis was fully corrected and survival increased in group PR (50.0%), compared to group CR (20.0%). CONCLUSION Pyr-ORS was more effective than Cit-ORS in improving hemodynamics, visceral blood perfusion and organ function by alleviating vasopermeability-induced visceral edema and plasma volume loss in dogs with severe burn.
Collapse
Affiliation(s)
- Rui Liu
- Department of Burns, the Fifth Hospital of Harbin, Harbin, 150040, China
| | - Xiao-Hang Hu
- Laboratory for Shock and Multiple Organ Dysfunction of Burns Institute, Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury and Repair Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, China; School of Medical Science, Faculty of Science Office, Level 2, Carslaw Building (F07), University of Sydney, NSW 2006, Australia
| | - Shu-Ming Wang
- Department of Emergency Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Si-Jia Guo
- Department of Human Resources, the First Hospital of Harbin, Harbin 150010, China
| | - Zong-Yu Li
- Department of Burns, the Fifth Hospital of Harbin, Harbin, 150040, China
| | - Xiao-Dong Bai
- Department of Burn Surgery, the General Hospital of Armed Police Forces, Beijing 100039, China.
| | - Fang-Qiang Zhou
- Shanghai Sandai Pharmaceutical R&D Co., Pudong, Shanghai 201203, China.
| | - Sen Hu
- Laboratory for Shock and Multiple Organ Dysfunction of Burns Institute, Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury and Repair Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
10
|
Liu R, Wang SM, Liu XQ, Guo SJ, Wang HB, Hu S, Zhou FQ, Sheng ZY. Pyruvate alleviates lipid peroxidation and multiple-organ dysfunction in rats with hemorrhagic shock. Am J Emerg Med 2015; 34:525-30. [PMID: 26794285 DOI: 10.1016/j.ajem.2015.12.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Pyruvate can reduce lipid peroxidation, which plays a critical role in organ injury, in various models. However, it is not fully understood if this inhibition occurs in resuscitation of hemorrhagic shock (HS). This study examines effects of pyruvate Ringer solution (PR) in this respect in rats. METHODS Rats, subjected to 45% blood loss, were randomly allocated to the 3 groups (n = 18): HS with no fluid resuscitation (group NR), HS resuscitated with lactated Ringer solution (LR) (group LR), and HS resuscitated with PR (group PR). Mean arterial pressure, plasma levels of thiobarbituric acid reactive substances (TBARS), and superoxide dismutase were measured at various time points until 360 minutes after hemorrhage. Visceral organs were harvested at the end for evaluations of the TBARS, antioxidant enzyme, and tissue water content. Other 54 rats with identical procedures without sampling were documented for 24-hour survival rates (n = 18) after fluid resuscitation. RESULTS Pyruvate Ringer solution significantly increased mean arterial pressure and decreased blood TBARS levels after lethal HS. It also reduced TBARS concentrations and glutathione peroxidase activities but significantly enhanced glutathione reductase activities in most organs and greatly improved the ratios of reduced glutathione over oxidized glutathione in various organs in group PR, compared to group LR. Furthermore, PR significantly improved various organ function and water contents relative to LR. Group PR showed a more than 2-fold higher 24-hour survival rate of group LR. CONCLUSIONS Pyruvate Ringer solution alleviated organ edema and injury and prompted survival partially through inhibition of lipid peroxidation in various organs in severe HS rats.
Collapse
Affiliation(s)
- Rui Liu
- Department of Burn Surgery, Heilongjiang Provincial Hospital, Harbin 150036, China
| | - Shu-Ming Wang
- Department of Emergency Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xian-Qi Liu
- Laboratory for Shock and Multiple Organ Dysfunction, Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury and Repair Regeneration, the First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, China
| | - Si-Jia Guo
- Department of Human Resource, the First Hospital of Harbin, Harbin 150010, China
| | - Hai-Bin Wang
- Laboratory for Shock and Multiple Organ Dysfunction, Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury and Repair Regeneration, the First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, China
| | - Sen Hu
- Laboratory for Shock and Multiple Organ Dysfunction, Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury and Repair Regeneration, the First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, China.
| | - Fang-Qiang Zhou
- Shanghai Sandai Pharmarceutical R & D Co, Pudong, Shanghai 201203, China.
| | - Zhi-Yong Sheng
- Laboratory for Shock and Multiple Organ Dysfunction, Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury and Repair Regeneration, the First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
11
|
Hu S, Lin ZL, Zhao ZK, Liu R, Ma L, Luo HM, Zhou FQ, Bai XD. Pyruvate Is Superior to Citrate in Oral Rehydration Solution in the Protection of Intestine via Hypoxia-Inducible Factor-1 Activation in Rats With Burn Injury. JPEN J Parenter Enteral Nutr 2015; 40:924-33. [PMID: 25802304 DOI: 10.1177/0148607115577817] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/02/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent studies have suggested that pyruvate-enriched oral rehydration solution (Pyr-ORS) may be superior to the standard bicarbonate-based ORS in the protection of intestine from ischemic injury. The aim of this study was to compare the effects of Pyr-ORS with citrate-enriched ORS (Cit-ORS) on the intestinal hypoxia-inducible factor-1 (HIF-1)-erythropoietin (EPO) signaling pathway for enteral rehydration in a rat model of burn injury. METHODS Rats were randomly assigned to 4 groups (N = 20, 2 subgroups each: n = 10): scald sham (group SS), scald with no fluid resuscitation (group SN), scald and resuscitation with enteral Cit-ORS (group SC), and scald and resuscitation with enteral Pyr-ORS (group SP). At 2.5 and 4.5 hours after a 35% total body surface area (TBSA) scald, intestinal mucosal blood flow (IMBF), contents of HIF-1, EPO, endothelial nitric oxide synthase (eNOS), nitric oxide (NO), barrier protein (ZO-1), levels of serum diamine oxidase (DAO), and intestinal mucosal histology injury score were determined. RESULTS Serum DAO activities in the scalded groups were significantly elevated, but less raised in group SP than in group SC, at 2.5 hours and at 4.5 hours after the scald. Further, group SP more profoundly preserved intestinal HIF-1 expression compared with group SC at the 2 time points. Compared with group SC, group SP had markedly elevated intestinal EPO, eNOS, and NO levels at the same time points, respectively (P < .05). Similarly, IMBF and ZO-1 levels were significantly higher in group SP than in group SC. Intestinal mucosal histopathological scores were statistically higher at 2.5 hours and 4.5 hours after scalding but were more attenuated in group SP than in group SC (P < .05). Immunofluorescence expression of intestinal mucosal ZO-1 was consistent with the above changes. The above parameters were also significantly different between groups SC and SN (all P < .05). CONCLUSION Pyr-ORS provides a superior option to Cit-ORS for the preservation of intestinal blood flow and barrier function and the attenuation of histopathological alterations in enteral resuscitation of rats with burn injury. Its underlying mechanism may be closely related to the pyruvate in activation of intestinal HIF-1-EPO signaling cascades.
Collapse
Affiliation(s)
- Sen Hu
- Key Research Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury and Repair Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Zhi-Long Lin
- Key Research Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury and Repair Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | | | - Rui Liu
- Department of Burns and Plastic Surgery, The Fifth Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Li Ma
- Department of Burns and Plastic Surgery, the Armed Police General Hospital of People's Liberation Army, Beijing, China
| | - Hong-Min Luo
- Key Research Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury and Repair Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Fang-Qiang Zhou
- Fresenius Dialysis Centers at Chicago, Rolling Meadows, IL, USA Shanghai Sandai Pharmaceutical R&D Company, Pudong, Shanghai, China
| | - Xiao-Dong Bai
- Department of Burns and Plastic Surgery, the Armed Police General Hospital of People's Liberation Army, Beijing, China
| |
Collapse
|