1
|
Bayraktar S, Üstün C, Kehr NS. Oxygen Delivery Biomaterials in Wound Healing Applications. Macromol Biosci 2024; 24:e2300363. [PMID: 38037316 DOI: 10.1002/mabi.202300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/06/2023] [Indexed: 12/02/2023]
Abstract
Oxygen (O2 ) delivery biomaterials have attracted great interest in the treatment of chronic wounds due to their potential applications in local and continuous O2 generation and delivery, improving cell viability until vascularization occurs, promoting structural growth of new blood vessels, simulating collagen synthesis, killing bacteria and reducing hypoxia-induced tissue damage. Therefore, different types of O2 delivery biomaterials including thin polymer films, fibers, hydrogels, or nanocomposite hydrogels have been developed to provide controlled, sufficient and long-lasting O2 to prevent hypoxia and maintain cell viability until the engineered tissue is vascularized by the host system. These biomaterials are made by various approaches, such as encapsulating O2 releasing molecules into hydrogels, polymer microspheres and 3D printed hydrogel scaffolds and adsorbing O2 carrying reagents into polymer films of fibers. In this article, different O2 generating sources such as solid inorganic peroxides, liquid peroxides, and photosynthetic microalgae, and O2 carrying perfluorocarbons and hemoglobin are presented and the applications of O2 delivery biomaterials in promoting wound healing are discussed. Furthermore, challenges encountered and future perspectives are highlighted.
Collapse
Affiliation(s)
- Sema Bayraktar
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkey
| | - Cansu Üstün
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkey
| | - Nermin Seda Kehr
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkey
| |
Collapse
|
2
|
Mieczkowski M, Mrozikiewicz-Rakowska B, Kowara M, Kleibert M, Czupryniak L. The Problem of Wound Healing in Diabetes—From Molecular Pathways to the Design of an Animal Model. Int J Mol Sci 2022; 23:ijms23147930. [PMID: 35887276 PMCID: PMC9319250 DOI: 10.3390/ijms23147930] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
Chronic wounds are becoming an increasingly common clinical problem due to an aging population and an increased incidence of diabetes, atherosclerosis, and venous insufficiency, which are the conditions that impair and delay the healing process. Patients with diabetes constitute a group of subjects in whom the healing process is particularly prolonged regardless of its initial etiology. Circulatory dysfunction, both at the microvascular and macrovascular levels, is a leading factor in delaying or precluding wound healing in diabetes. The prolonged period of wound healing increases the risk of complications such as the development of infection, including sepsis and even amputation. Currently, many substances applied topically or systemically are supposed to accelerate the process of wound regeneration and finally wound closure. The role of clinical trials and preclinical studies, including research based on animal models, is to create safe medicinal products and ensure the fastest possible healing. To achieve this goal and minimize the wide-ranging burdens associated with conducting clinical trials, a correct animal model is needed to replicate the wound conditions in patients with diabetes as closely as possible. The aim of the paper is to summarize the most important molecular pathways which are impaired in the hyperglycemic state in the context of designing an animal model of diabetic chronic wounds. The authors focus on research optimization, including economic aspects and model reproducibility, as well as the ethical dimension of minimizing the suffering of research subjects according to the 3 Rs principle (Replacement, Reduction, Refinement).
Collapse
Affiliation(s)
- Mateusz Mieczkowski
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.M.); (M.K.); (L.C.)
| | - Beata Mrozikiewicz-Rakowska
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.M.); (M.K.); (L.C.)
- Correspondence:
| | - Michał Kowara
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland;
| | - Marcin Kleibert
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.M.); (M.K.); (L.C.)
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland;
| | - Leszek Czupryniak
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.M.); (M.K.); (L.C.)
| |
Collapse
|
3
|
Knockdown of sodium channel Na x reduces dermatitis symptoms in rabbit skin. J Transl Med 2020; 100:751-761. [PMID: 31925326 DOI: 10.1038/s41374-020-0371-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 12/19/2022] Open
Abstract
The skin plays a critical role in maintenance of water homeostasis. Dysfunction of the skin barrier causes not only delayed wound healing and hypertrophic scarring, but it also contributes to the development of various skin diseases. Dermatitis is a chronic inflammatory skin disorder that has several different subtypes. Skin of contact dermatitis and atopic dermatitis (AD) show epidermal barrier dysfunction. Nax is a sodium channel that regulates inflammatory gene expression in response to perturbation of barrier function of the skin. We found that in vivo knockdown of Nax using RNAi reduced hyperkeratosis and keratinocyte hyperproliferation in rabbit ear dermatitic skin. Increased infiltration of inflammatory cells (mast cells, eosinophils, T cells, and macrophages), a characteristic of dermatitis, was reduced by Nax knockdown. Upregulation of PAR-2 and thymic stromal lymphopoietin (TSLP), which induce Th2-mediated allergic responses, was inhibited by Nax knockdown. In addition, expression of COX-2, IL-1β, IL-8, and S100A9, which are downstream genes of Nax and are involved in dermatitis pathogenesis, were also decreased by Nax knockdown. Our data show that knockdown of Nax relieved dermatitis symptoms in vivo and indicate that Nax is a novel therapeutic target for dermatitis, which currently has limited therapeutic options.
Collapse
|
4
|
Li J, Wang J, Wang Z, Xia Y, Zhou M, Zhong A, Sun J. Experimental models for cutaneous hypertrophic scar research. Wound Repair Regen 2019; 28:126-144. [PMID: 31509318 DOI: 10.1111/wrr.12760] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 01/07/2023]
Abstract
Human skin wound repair may result in various outcomes with most of them leading to scar formation. Commonly seen in many cutaneous wound healing cases, hypertrophic scars are considered as phenotypes of abnormal wound repair. To prevent the formation of hypertrophic scars, efforts have been made to understand the mechanism of scarring following wound closure. Numerous in vivo and in vitro models have been created to facilitate investigations into cutaneous scarring and the development of antiscarring treatments. To select the best model for a specific study, background knowledge of the current models of hypertrophic scars is necessary. In this review, we describe in vivo and in vitro models for studying hypertrophic scars, as well as the distinct characteristics of these models. The choice of models for a specific study should be based on the characteristics of the model and the goal of the study. In general, in vivo animal models are often used in phenotypical scar formation analysis, development of antiscarring treatment, and functional analyses of individual genes. In contrast, in vitro models are chosen to pathway identification during scar formation as well as in high-throughput analysis in drug development. Besides helping investigators choose the best scarring model for their research, the goal of this review is to provide knowledge for improving the existing models and development of new models. These will contribute to the progress of scarring studies.
Collapse
Affiliation(s)
- Jialun Li
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yun Xia
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Muran Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Aimei Zhong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Ferris AE, Harding KG. Does localized iron loss in venous disease lead to systemic iron deficiency? A descriptive pilot study. Wound Repair Regen 2019; 28:33-38. [PMID: 31605501 DOI: 10.1111/wrr.12769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/23/2019] [Indexed: 01/22/2023]
Abstract
Haemosiderin deposition in the legs of patients with venous leg ulcers is well established, and several theories suggest this stored iron has a role in disease pathophysiology. In this novel pilot study of patients with chronic venous leg ulcers, we aimed to establish the relationship between wound fluid iron levels, serum iron parameters and healing. Fifteen patients with venous ulcers were included in the study. Blood samples were taken for full blood count and iron studies, while simultaneously wound fluid was obtained from the wound surface using filter paper. Wound areas were measured at initial and 4 week (+/- 2 day) follow-up visits. We found a positive correlation between wound fluid and serum iron (correlation co-efficient 0.27) and those with the lowest wound fluid iron level were also anemic. No association was found between initial wound area and wound fluid iron level but the largest wound areas were found in patients with anemia. Only 38% of patients demonstrated a reduction in wound area during the 4 week study, and 80% of those were not anemic or iron deficient. Conversely in those patients whose wounds did not reduce in size 88% were anemic or iron deficient. These findings demonstrate a previously unrecognized phenomenon of systemic iron store depletion secondary to leaching out of the body in wound exudate. In addition, these results suggest a high prevalence of anemia in patients with chronic venous ulcers, though whether this is cause or effect requires further research. Our findings also suggest that patients with venous ulcers have a high prevalence of iron deficiency and anemia, which appears to be often undiagnosed, and that diagnostic criteria for iron deficiency in patients with chronic wounds need to be revised to reflect the effect of chronic inflammation on iron metabolism.
Collapse
Affiliation(s)
- Amy E Ferris
- Cardiff and Vale University Health Board, Cardiff, UK
| | | |
Collapse
|
6
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 504] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
7
|
Abstract
Background The aim of this study was to investigate the effects of various ratios of hemodilution on the survival of McFarlane’s skin flaps. Material/Methods An experimental study was performed on 42 adult male Wistar rats (weighing 260 to 305 g) allocated to a control group without any volume loss and to 6 study groups with hemodilution ratios of 5%, 10%, 15%, 20%, 25%, and 30%. In all subjects, random-pattern McFarlane’s skin flaps were uniformly elevated and re-sutured to the donor sites. The amount of necrosis was evaluated on the 7th day postoperatively and compared among the groups. Results The amounts of flap necrosis in the groups with 5%, 10%, 15%, and 20% hemodilution ratios were significantly lower than that of the control group (p<0.001). In the 25% and 30% hemodilution groups, although there was less necrosis than in the control group, the differences were not statistically significant. Hematocrit levels, which initially decreased in conjunction with the hemodilution ratios, returned to normal levels on the 7th day after the operation. Conclusions Our results indicated that 20% or less of the total blood volume loss that may be compensated by the normovolemic hemodilution with dextran can improve flap survival.
Collapse
Affiliation(s)
- Canser Yilmaz Demir
- Department of Plastic and Reconstructive Surgery, Yuzuncu Yıl University Faculty of Medicine, Van, Turkey
| |
Collapse
|
8
|
Zhao J, Jia S, Xie P, Arenas GA, Galiano RD, Hong SJ, Mustoe TA. Topical application of Dermatophagoides farinae or oxazolone induces symptoms of atopic dermatitis in the rabbit ear. Arch Dermatol Res 2017; 309:567-578. [PMID: 28667471 DOI: 10.1007/s00403-017-1758-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 01/19/2023]
Abstract
Atopic dermatitis (AD) is a chronically relapsing inflammatory skin disease characterized by hyperproliferation and abnormal differentiation of the epidermis, and dermal infiltration of inflammatory cells. Appropriate animal models that recapitulate human AD and allow the analysis of disease processes in a reliable manner are essential to the study of AD. In this study, we established two AD models in rabbits by applying an allergen, Dermatophagoides farinae (Der f), or a hapten, oxazolone (OXZ). Application of the allergen or hapten induced a rapid onset and a chronically sustained AD-like skin lesion. The clinical symptoms, which include skin erythema, scaling, papula and edema, of AD-like rabbit skin were similar to those in human AD. Histological analysis showed that allergen- or hapten-treated rabbit skin showed increased epidermal thickening and inflammatory cell infiltration. Furthermore, PCNA and keratin 10 (K10) staining revealed excessive proliferation and insufficient differentiation of the epidermis in the rabbit AD-like skin. Western blot analysis showed decreased expression of thymic stromal lymphopoietin (TSLP), an AD cytokine, in the rabbit AD-like skin. Our results suggest that the allergen- or hapten-induced rabbit AD models have pathological features of human AD-like symptoms and will be useful for evaluating both pathogenic mechanisms and potential therapeutic agents for human AD.
Collapse
Affiliation(s)
- Jingling Zhao
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, GD, 510080, China.,Laboratory for Tissue Repair and Regenerative Surgery, Plastic Surgery Division, Department of Surgery, Northwestern University, Feinberg School of Medicine, 745 Fairbanks Ct, Chicago, IL, 60611, USA
| | - Shengxian Jia
- Laboratory for Tissue Repair and Regenerative Surgery, Plastic Surgery Division, Department of Surgery, Northwestern University, Feinberg School of Medicine, 745 Fairbanks Ct, Chicago, IL, 60611, USA
| | - Ping Xie
- Laboratory for Tissue Repair and Regenerative Surgery, Plastic Surgery Division, Department of Surgery, Northwestern University, Feinberg School of Medicine, 745 Fairbanks Ct, Chicago, IL, 60611, USA
| | - Gabriel A Arenas
- Laboratory for Tissue Repair and Regenerative Surgery, Plastic Surgery Division, Department of Surgery, Northwestern University, Feinberg School of Medicine, 745 Fairbanks Ct, Chicago, IL, 60611, USA
| | - Robert D Galiano
- Laboratory for Tissue Repair and Regenerative Surgery, Plastic Surgery Division, Department of Surgery, Northwestern University, Feinberg School of Medicine, 745 Fairbanks Ct, Chicago, IL, 60611, USA
| | - Seok Jong Hong
- Laboratory for Tissue Repair and Regenerative Surgery, Plastic Surgery Division, Department of Surgery, Northwestern University, Feinberg School of Medicine, 745 Fairbanks Ct, Chicago, IL, 60611, USA.
| | - Thomas A Mustoe
- Laboratory for Tissue Repair and Regenerative Surgery, Plastic Surgery Division, Department of Surgery, Northwestern University, Feinberg School of Medicine, 745 Fairbanks Ct, Chicago, IL, 60611, USA.
| |
Collapse
|
9
|
Politis C, Schoenaers J, Jacobs R, Agbaje JO. Wound Healing Problems in the Mouth. Front Physiol 2016; 7:507. [PMID: 27853435 PMCID: PMC5089986 DOI: 10.3389/fphys.2016.00507] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/14/2016] [Indexed: 12/23/2022] Open
Abstract
Wound healing is a primary survival mechanism that is largely taken for granted. The literature includes relatively little information about disturbed wound healing, and there is no acceptable classification describing wound healing process in the oral region. Wound healing comprises a sequence of complex biological processes. All tissues follow an essentially identical pattern to complete the healing process with minimal scar formation. The oral cavity is a remarkable environment in which wound healing occurs in warm oral fluid containing millions of microorganisms. The present review provides a basic overview of the wound healing process and with a discussion of the local and general factors that play roles in achieving efficient would healing. Results of oral cavity wound healing can vary from a clinically healed wound without scar formation and with histologically normal connective tissue under epithelial cells to extreme forms of trismus caused by fibrosis. Many local and general factors affect oral wound healing, and an improved understanding of these factors will help to address issues that lead to poor oral wound healing.
Collapse
Affiliation(s)
- Constantinus Politis
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Katholieke Universiteit LeuvenLeuven, Belgium; Oral and Maxillofacial Surgery, Leuven University HospitalsLeuven, Belgium
| | - Joseph Schoenaers
- Oral and Maxillofacial Surgery, Leuven University Hospitals Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Katholieke Universiteit Leuven Leuven, Belgium
| | - Jimoh O Agbaje
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Katholieke Universiteit LeuvenLeuven, Belgium; Oral and Maxillofacial Surgery, Leuven University HospitalsLeuven, Belgium
| |
Collapse
|
10
|
Abdennabi R, Bardaa S, Mehdi M, Rateb ME, Raab A, Alenezi FN, Sahnoun Z, Gharsallah N, Belbahri L. Phoenix dactylifera L. sap enhances wound healing in Wistar rats: Phytochemical and histological assessment. Int J Biol Macromol 2016; 88:443-50. [DOI: 10.1016/j.ijbiomac.2016.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/24/2016] [Accepted: 04/06/2016] [Indexed: 11/26/2022]
|