1
|
Li W, Deng J. Effect of Continuous Infusion Therapy With Low-dose Terlipressin Combined With Norepinephrine on Hemodynamics, Inflammatory Markers, and Prognosis in Patients With Severe Septic Shock. Mil Med 2024:usae369. [PMID: 39091078 DOI: 10.1093/milmed/usae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/25/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE The present study investigated the impact of continuous infusion therapy with low-dose terlipressin (TP) combined with norepinephrine on hemodynamics, inflammatory markers, and prognosis in patients with severe septic shock. MATERIALS AND METHODS Seventy-four patients with severe septic shock were randomly assigned to either a control group (n = 37) or an observation group (n = 37). Patients in the control group received norepinephrine alone, while those in the observation group received a continuous infusion of low-dose TP in addition to norepinephrine. To assess the effect of treatment, a set of clinical parameters was evaluated in both groups before and after treatment. These parameters included hemodynamic indicators (heart rate [HR], mean arterial pressure [MAP], central venous pressure [CVP], cardiac index [CI], and systemic vascular resistance index [SVRI]), levels of serum inflammatory markers (interleukin-8 [IL-8], tumor necrosis factor-α [TNF-α], and hypersensitivity C-reactive protein [hs-CRP]), renal function indicators (blood urea nitrogen [BUN], serum creatinine [SCr], and cystatin C [Cys-C]), serum procalcitonin (PCT), and lactate, as well as lactate clearance rate (LCR). Additionally, the acute physiology and chronic health evaluation II (APACHE II) score, 28-day mortality rate, multiple organ dysfunction syndrome (MODS) incidence rate, and adverse reaction incidence were also determined. RESULTS Compared to baseline values, MAP, CVP, CI, SVRI, and LCR increased in both groups after treatment, while HR, levels of IL-8, TNF-α, hs-CRP, BUN, SCr, PCT, and lactate all decreased. Additionally, APACHE II scores also decreased. Furthermore, the observation group exhibited higher MAP, CVP, CI, SVRI, and LCR, along with lower HR, levels of IL-8, TNF-α, hs-CRP, BUN, SCr, PCT, and lactate than the control group after treatment. The observation group also had lower APACHE II score, 28-day mortality rate, MODS incidence rate, and adverse reaction incidence than the control group after treatment (P < .05). CONCLUSION Continuous infusion therapy with low-dose TP combined with norepinephrine was effective in treating patients with severe septic shock, improving hemodynamic parameters, reducing the levels of inflammatory markers, promoting renal function recovery, and reducing the mortality rate.
Collapse
Affiliation(s)
- Wenlong Li
- Department of Emergency, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Jiaqian Deng
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
2
|
Wang J, Shi M, Huang L, Li Q, Meng S, Xu J, Xue M, Xie J, Liu S, Huang Y. Addition of terlipressin to norepinephrine in septic shock and effect of renal perfusion: a pilot study. Ren Fail 2022; 44:1207-1215. [PMID: 35856162 PMCID: PMC9307113 DOI: 10.1080/0886022x.2022.2095286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purpose Terlipressin improves renal function in patients with septic shock. However, the mechanism remains unclear. Here, we aimed to evaluate the effects of terlipressin on renal perfusion in patients with septic shock. Materials and Methods This pilot study enrolled patients with septic shock in the intensive care unit of the tertiary hospital from September 2019 to May 2020. We randomly assigned patients to terlipressin and usual care groups using a 1:1 ratio. Terlipressin was intravenously pumped at a rate of 1.3 μg/kg/hour for 24 h. We monitored renal perfusion using renal contrast-enhanced ultrasound (CEUS). The primary outcome was peak sonographic signal intensity (a renal perfusion parameter monitored by CEUS) at 24 h after enrollment. Results 22 patients were enrolled in this study with 10 in the terlipressin group and 12 in the usual care group. The baseline characteristics of patients between the two groups were comparable. The peak sonographic signal intensity at 24 h after enrollment in the terlipressin group (60.5 ± 8.6 dB) was significantly higher than that in the usual care group (52.4 ± 7.0 dB; mean difference, 7.1 dB; 95% CI, 0.4–13.9; adjusted p = .04). Patients in the terlipressin group had a lower time to peak, heart rates, norepinephrine dose, and a higher stroke volume at 24 h after enrollment. No significant difference in the urine output within 24 h and incidence of acute kidney injury within 28 days was found between the two groups. Conclusions Terlipressin improves renal perfusion, increases stroke volume, and decreases norepinephrine dose and heart rates in patients with septic shock.
Collapse
Affiliation(s)
- Jinlong Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Mengjuan Shi
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lili Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qing Li
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shanshan Meng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jingyuan Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ming Xue
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Songqiao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingzi Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Leelaviwat N, Benjanuwattra J, Elkheshen A, Eshak N, Elmassry M, Abdelnabi M. Transient diabetes insipidus after vasopressin discontinuation in cystic fibrosis with septic shock. Proc AMIA Symp 2022; 36:118-120. [PMID: 36578627 PMCID: PMC9762782 DOI: 10.1080/08998280.2022.2111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Central diabetes insipidus (DI) is an uncommon condition caused by reduced or lack of vasopressin secretion from the posterior pituitary gland, typically caused by gland destruction. Several other causes for central DI have also been proposed. Here we present a case of transient central DI after discontinuation of vasopressin used for septic shock without evidence of overt pituitary damage in a cystic fibrosis patient. The serum sodium concentration peaked at 137 mmol/L in the setting of polyuria within 3 days of vasopressin discontinuation without other identified alternative etiologies. Sodium levels and urine output trended down dramatically with desmopressin administration.
Collapse
Affiliation(s)
- Natnicha Leelaviwat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Juthipong Benjanuwattra
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Ahmed Elkheshen
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Nouran Eshak
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Marawan Elmassry
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Mahmoud Abdelnabi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas,Cardiology and Angiology Unit, Clinical and Experimental Internal Medicine Department, Medical Research Institute, Alexandria University, Alexandria, Egypt,Corresponding author: Mahmoud Hassan Abdelnabi, MD, MSc, Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX79430 (e-mail: )
| |
Collapse
|
4
|
Sahoo P, Kothari N, Goyal S, Sharma A, Bhatia PK. Comparison of Norepinephrine and Terlipressin vs Norepinephrine Alone for Management of Septic Shock: A Randomized Control Study. Indian J Crit Care Med 2022; 26:669-675. [PMID: 35836627 PMCID: PMC9237141 DOI: 10.5005/jp-journals-10071-24231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose To compare norepinephrine and terlipressin vs norepinephrine alone for management of septic shock. Materials and methods In this prospective, randomized control trial, 50 adult patients with septic shock were randomized into two groups. Group I received a combination of injection terlipressin 0.02 µg/kg/min (fixed dose) infusion and injection norepinephrine 0.01 µg/kg/min infusion and group II received injection norepinephrine 0.01 µg/kg/min infusion alone. Dose of noradrenaline in both the groups was titrated to achieve the target MAP of 65–70 mm Hg. The data collected were the dose of norepinephrine required to maintain an MAP of above 65 mm Hg, urine output, serum lactate, procalcitonin level, C-reactive protein, sequential organ failure assessment (SOFA) score, total duration of vasopressor support, and incidences of the adverse effects. Results The norepinephrine dose in group I vs group II at 12 hours was found to be 0.141 ± 0.067 vs 0.374 ± 0.096 µg/kg/min (p ≤0.005). The serum lactate was lower, and urine output was higher in group I than group II (p <0.05). Group I had a significantly greater reduction in SOFA score in 12 hours than group II. Group I patient also had a significant decrease in the duration of vasopressor administration than group II patients being discharged from the ICU. However, there was no difference in the mortality between the two groups during their ICU stay. Conclusion A low-dose continuous infusion of terlipressin and norepinephrine could help attain early resuscitation goals for managing patients with septic shock. How to cite this article Sahoo P, Kothari N, Goyal S, Sharma A, Bhatia PK. Comparison of Norepinephrine and Terlipressin vs Norepinephrine Alone for Management of Septic Shock: A Randomized Control Study. Indian J Crit Care Med 2022;26(6):669–675.
Collapse
Affiliation(s)
- Pallavi Sahoo
- Department of Anaesthesiology and Critical Care, AIIMS, Jodhpur, Rajasthan, India
| | - Nikhil Kothari
- Department of Anaesthesiology and Critical Care, AIIMS, Jodhpur, Rajasthan, India
| | - Shilpa Goyal
- Department of Anaesthesiology and Critical Care, AIIMS, Jodhpur, Rajasthan, India
| | - Ankur Sharma
- Department of Trauma and Emergency (Anaesthesia), AIIMS, Jodhpur, Rajasthan, India
- Ankur Sharma, Department of Trauma and Emergency (Anaesthesia), AIIMS, Jodhpur, Rajasthan, India, Phone: +91 9654045653, e-mail:
| | - Pradeep K Bhatia
- Department of Anaesthesiology and Critical Care, AIIMS, Jodhpur, Rajasthan, India
| |
Collapse
|
5
|
Pata R, Nway N, Logvinsky IK, Lutaya I, Chowdhury T. Sudden Vasopressin Withdrawal Causing Transient Central Diabetes Insipidus: A Case Report. Cureus 2022; 14:e24966. [PMID: 35698684 PMCID: PMC9188783 DOI: 10.7759/cureus.24966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 11/05/2022] Open
Abstract
Vasopressin is a peptide hormone produced by the hypothalamus and stored in the posterior pituitary. It is secreted in response to hypotension and hyperosmolarity. Vasopressin and its analogs have been widely used in vasodilatory shocks such as septic shock and cardiogenic shock. The sudden withdrawal of vasopressin after its prolonged use can lead to polyuria and rising sodium levels, which is concerning for the diagnosis of diabetic insipidus (DI); likely central rather than nephrogenic in origin. We present a case of diabetic insipidus following the sudden discontinuation of a prolonged vasopressin infusion for septic shock, which responded to tapering doses of desmopressin.
Collapse
|
6
|
Glavaš M, Gitlin-Domagalska A, Dębowski D, Ptaszyńska N, Łęgowska A, Rolka K. Vasopressin and Its Analogues: From Natural Hormones to Multitasking Peptides. Int J Mol Sci 2022; 23:3068. [PMID: 35328489 PMCID: PMC8955888 DOI: 10.3390/ijms23063068] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Human neurohormone vasopressin (AVP) is synthesized in overlapping regions in the hypothalamus. It is mainly known for its vasoconstricting abilities, and it is responsible for the regulation of plasma osmolality by maintaining fluid homeostasis. Over years, many attempts have been made to modify this hormone and find AVP analogues with different pharmacological profiles that could overcome its limitations. Non-peptide AVP analogues with low molecular weight presented good affinity to AVP receptors. Natural peptide counterparts, found in animals, are successfully applied as therapeutics; for instance, lypressin used in treatment of diabetes insipidus. Synthetic peptide analogues compensate for the shortcomings of AVP. Desmopressin is more resistant to proteolysis and presents mainly antidiuretic effects, while terlipressin is a long-acting AVP analogue and a drug recommended in the treatment of varicose bleeding in patients with liver cirrhosis. Recently published results on diverse applications of AVP analogues in medicinal practice, including potential lypressin, terlipressin and ornipressin in the treatment of SARS-CoV-2, are discussed.
Collapse
Affiliation(s)
| | - Agata Gitlin-Domagalska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (D.D.); (N.P.); (A.Ł.); (K.R.)
| | | | | | | | | |
Collapse
|
7
|
Cid-Jofré V, Moreno M, Reyes-Parada M, Renard GM. Role of Oxytocin and Vasopressin in Neuropsychiatric Disorders: Therapeutic Potential of Agonists and Antagonists. Int J Mol Sci 2021; 22:ijms222112077. [PMID: 34769501 PMCID: PMC8584779 DOI: 10.3390/ijms222112077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Oxytocin (OT) and vasopressin (AVP) are hypothalamic neuropeptides classically associated with their regulatory role in reproduction, water homeostasis, and social behaviors. Interestingly, this role has expanded in recent years and has positioned these neuropeptides as therapeutic targets for various neuropsychiatric diseases such as autism, addiction, schizophrenia, depression, and anxiety disorders. Due to the chemical-physical characteristics of these neuropeptides including short half-life, poor blood-brain barrier penetration, promiscuity for AVP and OT receptors (AVP-R, OT-R), novel ligands have been developed in recent decades. This review summarizes the role of OT and AVP in neuropsychiatric conditions, as well as the findings of different OT-R and AVP-R agonists and antagonists, used both at the preclinical and clinical level. Furthermore, we discuss their possible therapeutic potential for central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Valeska Cid-Jofré
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (V.C.-J.); (M.M.)
| | - Macarena Moreno
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (V.C.-J.); (M.M.)
- Facultad de Ciencias Sociales, Escuela de Psicología, Universidad Bernardo OHiggins, Santiago 8370993, Chile
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (V.C.-J.); (M.M.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia 7500912, Chile
- Correspondence: (M.R.-P.); (G.M.R.)
| | - Georgina M. Renard
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (V.C.-J.); (M.M.)
- Correspondence: (M.R.-P.); (G.M.R.)
| |
Collapse
|
8
|
Pralidoxime improves the hemodynamics and survival of rats with peritonitis-induced sepsis. PLoS One 2021; 16:e0249794. [PMID: 33822820 PMCID: PMC8023460 DOI: 10.1371/journal.pone.0249794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Several studies have suggested that sympathetic overstimulation causes deleterious effects in septic shock. A previous study suggested that pralidoxime exerted a pressor effect through a mechanism unrelated to the sympathetic nervous system; this effect was buffered by the vasodepressor action of pralidoxime mediated through sympathoinhibition. In this study, we explored the effects of pralidoxime on hemodynamics and survival in rats with peritonitis-induced sepsis. This study consisted of two sub-studies: survival and hemodynamic studies. In the survival study, 66 rats, which survived for 10 hours after cecal ligation and puncture (CLP), randomly received saline placebo, pralidoxime, or norepinephrine treatment and were monitored for up to 24 hours. In the hemodynamic study, 44 rats were randomly assigned to sham, CLP-saline placebo, CLP-pralidoxime, or CLP-norepinephrine groups, and hemodynamic measurements were performed using a conductance catheter placed in the left ventricle. In the survival study, 6 (27.2%), 15 (68.1%), and 5 (22.7%) animals survived the entire 24-hour monitoring period in the saline, pralidoxime, and norepinephrine groups, respectively (log-rank test P = 0.006). In the hemodynamic study, pralidoxime but not norepinephrine increased end-diastolic volume (P <0.001), stroke volume (P = 0.002), cardiac output (P = 0.003), mean arterial pressure (P = 0.041), and stroke work (P <0.001). The pressor effect of norepinephrine was short-lived, such that by 60 minutes after the initiation of norepinephrine infusion, it no longer had any significant effect on mean arterial pressure. In addition, norepinephrine significantly increased heart rate (P <0.001) and the ratio of arterial elastance to ventricular end-systolic elastance (P = 0.010), but pralidoxime did not. In conclusion, pralidoxime improved the hemodynamics and 24-hour survival rate in rats with peritonitis-induced sepsis, but norepinephrine did not.
Collapse
|
9
|
Huang ZS, Xie DQ, Xu LJ, Huang CS, Zheng M, Chen YJ, Cao Y. Tetramethylpyrazine Ameliorates Lipopolysaccharide-Induced Sepsis in Rats via Protecting Blood-Brain Barrier, Impairing Inflammation and Nitrous Oxide Systems. Front Pharmacol 2020; 11:562084. [PMID: 33123008 PMCID: PMC7566283 DOI: 10.3389/fphar.2020.562084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/31/2020] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to assess the underlying impact of Tetramethylpyrazine (TMP), which is the main activity compound of Ligusticum chuanxiong Hort, on the blood–brain barrier, inflammatory and nitrous oxide systems in a rat model of lipopolysaccharide (LPS)-induced sepsis. The SD rats were divided into control group, LPS treatment group, and LPS + TMP treatment group. TMP administered by tail vein injection. The mortality of experimental rats was recorded during the experiment. Rats were sacrificed after 14 days. Peripheral blood was collected and the expression levels of inflammatory factors TNF-α, IL-1β, and IL-6 were detected by ELISA. The integrity of blood-brain barrier was detected by sodium fluorescein staining. Lung and brain tissues were taken to detect the infiltration of immune cells. Immunohistochemistry was performed to detect the expression of tight junctions related proteins and oxidative stress-related proteins. The results showed that TMP treatment for 14 days significantly decreased the weight loss and increased the survival rate of the septic rats significantly. TMP decreased the infiltration of inflammatory cells and alleviated the sepsis-induced damage in both the lung and brain tissues. The inflammatory cytokines TNF-α, IL-1β, and IL-6, were significantly decreased post-TMP treatment. Histopathological analysis with sodium fluorescein staining density showed that TMP had a protective effect on the basal lamina and cerebral cortex. Also, TMP significantly increased expression of the tight junction-related proteins claudin-5 and occludin in the brain tissue and increased the expression of the ZO-1, Occludin, and Claudin-5 genes, indicating alleviated the degree of blood–brain barrier destruction. Furthermore, immunohistochemistry (IHC) and immunoblotting confirmed that TMP could inhibit the indicators of the nitrous oxide system, iNOS and eNOS; in addition, TMP significantly decreased the levels of MDA and NO. The findings showed that TMP treatment during sepsis was associated with the protection of the blood–brain barrier and the suppression of inflammatory reactions and the nitrous oxide system. This study reveals a promising protective role of TMP in septic encephalopathy and may suggest a therapeutic approach for fighting the deadly disease of sepsis in the clinic.
Collapse
Affiliation(s)
- Zi-Sheng Huang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Da-Qi Xie
- Department of Cardiology, Ningbo Ninth Hospital, Ningbo, China
| | - Li-Jun Xu
- Ophthalmology Operating Room, Ningbo First Hospital, Ningbo, China
| | - Chang-Shun Huang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Min Zheng
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Yi-Jun Chen
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Yin Cao
- Department of Anesthesiology, Ningbo Ninth Hospital, Ningbo, China
| |
Collapse
|
10
|
Huang L, Zhang S, Chang W, Xia F, Liu S, Yang Y, Qiu H. Terlipressin for the treatment of septic shock in adults: a systematic review and meta-analysis. BMC Anesthesiol 2020; 20:58. [PMID: 32138657 PMCID: PMC7057452 DOI: 10.1186/s12871-020-00965-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background Catecholamines are the first-line vasopressors used in patients with septic shock. However, the search for novel drug candidates is still of great importance due to the development of adrenergic hyposensitivity accompanied by a decrease in catecholamine activity. Terlipressin (TP) is a synthetic vasopressin analogue used in the management of patients with septic shock. In the current study, we aimed to compare the effects of TP and catecholamine infusion in treating septic shock patients. Methods A systematic review and meta-analysis was conducted by searching articles published in PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials between inception and July 2018. We only selected randomized controlled trials evaluating the use of TP and catecholamine in adult patients with septic shock. The primary outcome was overall mortality. The secondary outcomes were the ICU length of stay, haemodynamic changes, tissue perfusion, renal function, and adverse events. Results A total of 9 studies with 850 participants were included in the analysis. Overall, no significant difference in mortality was observed between the TP and catecholamine groups (risk ratio(RR), 0.85 (0.70 to 1.03); P = 0.09). In patients < 60 years old, the mortality rate was lower in the TP group than in the catecholamine group (RR, 0.66 (0.50 to 0.86); P = 0.002). There was no significant difference in the ICU length of stay (mean difference, MD), − 0.28 days; 95% confidence interval (CI), − 1.25 to 0.69; P = 0.58). Additionally, TP improved renal function. The creatinine level was decreased in patients who received TP therapy compared to catecholamine-treated participants (standard mean difference, SMD), − 0.65; 95% CI, − 1.09 to − 0.22; P = 0.003). No significant difference was found regarding the total adverse events (Odds Ratio(OR), 1.48(0.51 to 4.24); P = 0.47), whereas peripheral ischaemia was more common in the TP group (OR, 8.65(1.48 to 50.59); P = 0.02). Conclusion The use of TP was associated with reduced mortality in septic shock patients less than 60 years old. TP may also improve renal function and cause more peripheral ischaemia. PROSPERO registry: CRD42016035872.
Collapse
Affiliation(s)
- Lili Huang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Shi Zhang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Chang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Feiping Xia
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Songqiao Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Post EH, Su F, Righy Shinotsuka C, Taccone FS, Creteur J, De Backer D, Vincent JL. Renal autoregulation in experimental septic shock and its response to vasopressin and norepinephrine administration. J Appl Physiol (1985) 2018; 125:1661-1669. [PMID: 30260750 DOI: 10.1152/japplphysiol.00783.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that septic shock patients with chronic arterial hypertension may benefit from resuscitation targeted to achieve higher blood pressure values than other patients, possibly as a result of altered renal autoregulation. The effects of different vasopressor agents on renal autoregulation may be important in this context. We investigated the effects of arginine vasopressin (AVP) and norepinephrine (NE) on renal autoregulation in ovine septic shock. Sepsis was induced by fecal peritonitis. When shock developed (decrease in mean arterial pressure to <65 mmHg and no fluid-responsiveness), animals were randomized to receive NE or AVP in a crossover design. Before the switch to the second vasopressor, the first vasopressor was discontinued for 30 minutes to ensure complete washout of the first vasopressor. Renal autoregulation was evaluated by recording the change in renal blood flow (RBF) in response to manual, stepwise reductions in renal inflow pressure. In this model, the lower limit of renal autoregulation was not significantly altered 6 hours after sepsis induction (59±9 vs. 64±7 mmHg at baseline, p=0.096). After development of shock, the autoregulatory threshold was lower with AVP than with NE (59±5 vs. 65±7 mmHg, p=0.010). However, RBF was higher with NE both at the start of autoregulatory measurements (206±58 vs. 170±52 mL/min; p=0.050) and at the autoregulatory threshold (191±53 vs. 150±47 mL/min; p=0.008). As vasopressors may have different effects on renal autoregulation, blood pressure management in patients with septic shock should be individualized and take into account drug-specific effects.
Collapse
|
12
|
Beneficial Effect of Intermedin 1-53 in Septic Shock Rats: Contributions of Rho Kinase and BKCA Pathway-Mediated Improvement in Cardiac Function. Shock 2018; 46:557-565. [PMID: 27355401 DOI: 10.1097/shk.0000000000000639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Intermedin (IMD) is a calcitonin gene-related peptide shown to have a protective effect on myocardial function in ischemia-reperfusion injury. Whether IMD has beneficial effect in severe sepsis and septic shock (and its underlying mechanisms) is not known. METHODS We induced septic shock using cecal ligation and puncture (CLP). We focused on the potential beneficial effect of IMD1-53 on cardiac papillary muscle and cardiomyocytes against septic shock and its relationship with the protection of cardiac function. RESULTS Early (immediately after CLP) and late (12 h after CLP) administration of IMD1-53 (0.5 μg/kg) improved animal survival significantly, increased cardiac contractility and function, and improved tissue perfusion and oxygen delivery. The effect of early administration of IMD1-53 was better than that of late administration. The Rho kinase/TnI and BKCa pathways participated in the protective effect of IMD1-53 on cardiac function in septic rats. An inhibitor of Rho kinase (Y-27632) or a BKCa opener (NS1619) abolished the protective effect of IMD1-53 on cardiac function. IMD1-53 increased expression of Rho kinase in cardiac muscle and inhibited TnI phosphorylation. IMD1-53 inhibited currents in BKCa channels and intracellular calcium concentration in cardiomyocytes. CONCLUSIONS IMD1-53 is beneficial against severe sepsis/septic shock. IMD1-53 can improve cardiac contractility and cardiac function significantly, and then improve tissue perfusion and oxygen delivery. Rho kinase and the BKCa pathways have important roles in these effects. These findings provide a new treatment strategy for severe sepsis with cardiac dysfunction.
Collapse
|
13
|
Choong K. Vasopressin in Pediatric Critical Care. J Pediatr Intensive Care 2016; 5:182-188. [PMID: 31110903 PMCID: PMC6512420 DOI: 10.1055/s-0036-1583282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/15/2015] [Indexed: 10/21/2022] Open
Abstract
Vasopressin is a unique hormone with complex receptor physiology and numerous physiologic functions beyond its well-known vascular actions and osmoregulation. While vasopressin has in the past been primarily used in the management of diabetes insipidus and acute gastrointestinal bleeding, an increased understanding of the physiology of refractory shock, and the role of vasopressin in maintaining cardiovascular homeostasis prompted a renewed interest in the therapeutic roles for this hormone in the critical care setting. Identifying vasopressin-deficient individuals for the purposes of assessing responsiveness to exogenous hormone and prognosticating outcome has expanded research into the evaluation of vasopressin and its precursor, copeptin as useful biomarkers. This review summarizes the current evidence for vasopressin in critically ill children, with a specific focus on its use in the management of shock. We outline important considerations and current guidelines, when considering the use of vasopressin or its analogues in the pediatric critical care setting.
Collapse
Affiliation(s)
- Karen Choong
- Department of Pediatrics, Critical Care, Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Colson PH, Virsolvy A, Gaudard P, Charrabi A, Corbani M, Manière MJ, Richard S, Guillon G. Terlipressin, a vasoactive prodrug recommended in hepatorenal syndrome, is an agonist of human V1, V2 and V1B receptors: Implications for its safety profile. Pharmacol Res 2016; 113:257-264. [PMID: 27586252 DOI: 10.1016/j.phrs.2016.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/12/2016] [Accepted: 08/27/2016] [Indexed: 12/13/2022]
Abstract
Terlipressin is recommended as a gold standard to treat hepatorenal syndrome complicating liver cirrhosis. It is presented as a specific V1A receptor agonist, beyond its enzymatic conversion into lysine8-Vasopressin (LVP), able to counteract the splanchnic vasodilation. However, the complete pharmacological characterization of this drug with respect to the different vasopressin receptor subtypes is missing. We studied terlipressin intrinsic properties, focusing not only on V1A, but also on other vasopressin receptor subtypes. The experimental studies were conducted on rat and human cellular models. Binding experiments were performed on rat liver membranes and CHO cells transfected with the different human vasopressin receptor subtypes. Agonist status was assessed from inositol phosphate or cyclic AMP assays, and measurement of intracellular calcium variations, performed on cultured vascular smooth muscle cells from rat aorta and human uterine artery and CHO cells. Terlipressin binds to the rat and human V1A receptors with an affinity in the micromolar range, a value 120 fold lower than that of LVP. It induces a rapid and transient intracellular calcium increase, a robust stimulation of phospholipase C but with reduced maximal efficiencies as compared to LVP, indicating a partial V1A agonist property. In addition, terlipressin is also a full agonist of human V2 and V1B receptors, with also a micromomolar affinity. CONCLUSIONS Terlipressin is a non-selective vasopressin analogue, exhibiting intrinsic agonist properties. Its full V2 receptor agonism may result in renal effects potentially aggravating water retention and hyponatremia of cirrhosis.
Collapse
Affiliation(s)
- Pascal H Colson
- Institut de Génomique Fonctionnelle, Département d'Endocrinologie, CNRS UMR 5203, INSERM U1191, Université de Montpellier, F-34094 Montpellier, France; Département d'Anesthésie Réanimation Arnaud de Villeneuve, Centre Hospitalier Régional et Universitaire, F-34295 Montpellier, France.
| | - Anne Virsolvy
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, F-34295 Montpellier, France.
| | - Philippe Gaudard
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, F-34295 Montpellier, France; Département d'Anesthésie Réanimation Arnaud de Villeneuve, Centre Hospitalier Régional et Universitaire, F-34295 Montpellier, France.
| | - Azzouz Charrabi
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, F-34295 Montpellier, France.
| | - Maithé Corbani
- Institut de Génomique Fonctionnelle, Département d'Endocrinologie, CNRS UMR 5203, INSERM U1191, Université de Montpellier, F-34094 Montpellier, France.
| | - Maxime J Manière
- Institut de Génomique Fonctionnelle, Département d'Endocrinologie, CNRS UMR 5203, INSERM U1191, Université de Montpellier, F-34094 Montpellier, France.
| | - Sylvain Richard
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, F-34295 Montpellier, France.
| | - Gilles Guillon
- Institut de Génomique Fonctionnelle, Département d'Endocrinologie, CNRS UMR 5203, INSERM U1191, Université de Montpellier, F-34094 Montpellier, France.
| |
Collapse
|
15
|
Xiao X, Zhang J, Wang Y, Zhou J, Zhu Y, Jiang D, Liu L, Li T. Effects of terlipressin on patients with sepsis via improving tissue blood flow. J Surg Res 2016; 200:274-82. [DOI: 10.1016/j.jss.2015.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/24/2015] [Accepted: 07/08/2015] [Indexed: 12/14/2022]
|