1
|
Khalaf R, Duarte Bateman D, Reyes J, Najafali D, Rampazzo A, Bassiri Gharb B. Systematic review of pathologic markers in skin ischemia with and without reperfusion injury in microsurgical reconstruction: Biomarker alterations precede histological structure changes. Microsurgery 2024; 44:e31141. [PMID: 38361264 DOI: 10.1002/micr.31141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/05/2023] [Accepted: 12/27/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Ischemia and ischemia-reperfusion injury contribute to partial or complete flap necrosis. Traditionally, skin histology has been used to evaluate morphological and structural changes, however histology does not detect early changes. We hypothesize that morphological and structural skin changes in response to ischemia and IRI occur late, and modification of gene and protein expression are the earliest changes in ischemia and IRI. METHODS A systematic review was performed in accordance with PRISMA guidelines. Studies reporting skin histology or gene/protein expression changes following ischemia with or without reperfusion injury published between 2002 and 2022 were included. The primary outcomes were descriptive and semi-quantitative histological structural changes, leukocyte infiltration, edema, vessel density; secondary outcomes were quantitative gene and protein expression intensity (PCR and western blot). Model type, experimental intervention, ischemia method and duration, reperfusion duration, biopsy location and time point were collected. RESULTS One hundred and one articles were included. Hematoxylin and eosin (H&E) showed inflammatory infiltration in early responses (12-24 h), with structural modifications (3-14 days) and neovascularization (5-14 days) as delayed responses. Immunohistochemistry (IHC) identified angiogenesis (CD31, CD34), apoptosis (TUNEL, caspase-3, Bax/Bcl-2), and protein localization (NF-κB). Gene (PCR) and protein expression (western blot) detected inflammation and apoptosis; endoplasmic reticulum stress/oxidative stress and hypoxia; and neovascularization. The most common markers were TNF-α, IL-6 and IL-1β (inflammation), caspase-3 (apoptosis), VEGF (neovascularization), and HIF-1α (hypoxia). CONCLUSION There is no consensus or standard for reporting skin injury during ischemia and IRI. H&E histology is most frequently performed but is primarily descriptive and lacks sensitivity for early skin injury. Immunohistochemistry and gene/protein expression reveal immediate and quantitative cellular responses to skin ischemia and IRI. Future research is needed towards a universally-accepted skin injury scoring system.
Collapse
Affiliation(s)
- Ryan Khalaf
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Jose Reyes
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel Najafali
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Antonio Rampazzo
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
2
|
Wang K, Deng J, Yang J, Wang A, Ye M, Chen Q, Chen G, Lin D. Tetrandrine promotes the survival of the random skin flap via the PI3K/AKT signaling pathway. Phytother Res 2024; 38:527-538. [PMID: 37909161 DOI: 10.1002/ptr.8058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023]
Abstract
Flaps are mainly used for wound repair. However, postoperative ischemic necrosis of the distal flap is a major problem, which needs to be addressed urgently. We evaluated whether tetrandrine, a compound found in traditional Chinese medicine, can prolong the survival rate of random skin flaps. Thirty-six rats were randomly divided into control, low-dose tetrandrine (25 mg/kg/day), and high-dose tetrandrine (60 mg/kg/day) groups. On postoperative Day 7, the flap survival and average survival area were determined. After the rats were sacrificed, the levels of angiogenesis, apoptosis, and inflammation in the flap tissue were detected with immunology and molecular biology analyses. Tetrandrine increased vascular endothelial growth factor and Bcl-2 expression, in turn promoting angiogenesis and anti-apoptotic processes, respectively. Additionally, tetrandrine decreased the expression of Bax, which is associated with the induction of apoptosis, and also decreased inflammation in the flap tissue. Tetrandrine improved the survival rate of random flaps by promoting angiogenesis, inhibiting apoptosis, and reducing inflammation in the flap tissue through the modulation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Kaitao Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiapeng Deng
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jialong Yang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - An Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Minle Ye
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qingyu Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guodong Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dingsheng Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Ibne Mahbub MS, Kim YJ, Choi H, Lee BT. Papaverine loaded injectable and thermosensitive hydrogel system for improving survival of rat dorsal skin flaps. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:28. [PMID: 37209216 PMCID: PMC10199301 DOI: 10.1007/s10856-023-06732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/02/2023] [Indexed: 05/22/2023]
Abstract
Vasospasm during reconstructive microsurgery is a common, uncertain, and devastating phenomena concerning flap survival. Topical vasodilators as antispasmodic agents are widely used to reduce vasospasm and enhance microvascular anastomosis in reconstructive microsurgery. In this study, thermo-responsive hydrogel (CNH) was fabricated by grafting chitosan (CS) and hyaluronic acid (HA) to poly(N-isopropylacrylamide) (PNIPAM). Papaverine, an anti-spasmodic agent, was then loaded to evaluate its effect on rat skin flap survival. Post-operative flap survival area and water content of rat dorsal skin flap were measured at 7 days after intradermal application of control hydrogel (CNHP0.0) and papaverine loaded hydrogel (CNHP0.4). Tissue malondialdehyde (MDA) content and superoxide dismutase (SOD) activity was measured using enzyme linked immunosorbent assay (ELISA) to determine oxidative stress in flaps. Hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) were performed to evaluate flap angiogenesis and inflammatory markers. Results showed that CNHP0.4 hydrogel could reduce tissue edema (35.63 ± 4.01%), improve flap survival area (76.30 ± 5.39%), increase SOD activity and decrease MDA content. Consequently, it also increased mean vessel density, upregulated expression of CD34 and VEGF, decreased macrophage infiltration, and reduced CD68 and CCR7 expression based on IHC staining. Overall, these results indicate that CNHP0.4 hydrogel can enhance angiogenesis with anti-oxidative and anti-inflammatory effects and promote skin flap survival by preventing vascular spasm.
Collapse
Affiliation(s)
- Md Sowaib Ibne Mahbub
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Yeong Jin Kim
- Department of Plastic & Reconstructive Surgery, Soonchunhyang University Hospital, Cheonan, South Korea
| | - Hwanjun Choi
- Department of Plastic & Reconstructive Surgery, Soonchunhyang University Hospital, Cheonan, South Korea.
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
4
|
Zhang D, Jin C, Han T, Chen J, Ali Raza M, Li B, Wang L, Yan H. Sinomenine promotes flap survival by upregulating eNOS and eNOS-mediated autophagy via PI3K/AKT pathway. Int Immunopharmacol 2023; 116:109752. [PMID: 36739833 DOI: 10.1016/j.intimp.2023.109752] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 02/05/2023]
Abstract
Large skin defects and surgical tissue reconstructions are frequently covered utilizing random flaps. The flap has the advantage of being designed according to the size and shape of a surgical wound. However, the necrosis of the distal part of the flap restricts the clinical application of flaps. Sinomenine (SIN) is the major active component of sinomenium acutum. SIN has been demonstrated to inhibit oxidative stress and stimulate autophagy in a cell, animal, and clinical studies. The protective and proliferative effects of sinomenium on HUVECs were evaluated by scratched test, CCK-8, and EDU assays. For the flap survival, we established a mouse random pattern flap model and observed the effects of SIN injected intraperitoneally. The survival area and blood flow intensity of the flap in sinomenium group were significantly increased compared to the control group. Our results demonstrate that SIN promotes flap survival. Sinomenium enhances eNOS expression in the flap and reduces the level of oxidative stress, promotes autophagy flux increase, reduces apoptosis, and promotes angiogenesis. Having a therapeutic benefit of SIN, Autophagy inhibitor 3-MA shows its critical role by reversing the beneficial effects of SIN, and the nitric oxide synthase inhibitor l-NAME both stimulated HUVECs that explore the relationship between autophagy flux and nitric oxide synthase. Furthermore, the mechanism in our study reveals the changes in the signal pathway of PI3K/AKT, the protective effect of SIN during antioxidant activity, the activation of eNOS through PI3K/AKT signaling pathway affects autophagy through the eNOS system, and promote the random flap survival.
Collapse
Affiliation(s)
- Dupiao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chen Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tao Han
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianpeng Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mazhar Ali Raza
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Baolong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hede Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Tikhonova IV, Grinevich AA, Tankanag AV, Safronova VG. Skin Microhemodynamics and Mechanisms of Its Regulation in Type 2 Diabetes Mellitus. Biophysics (Nagoya-shi) 2022; 67:647-659. [PMID: 36281313 PMCID: PMC9581453 DOI: 10.1134/s0006350922040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/07/2022] Open
Abstract
The review presents modern ideas about peripheral microhemodynamics, approaches to the ana-lysis of skin blood flow oscillations and their diagnostic significance. Disorders of skin microhemodynamics in type 2 diabetes mellitus (DM) and the possibility of their interpretation from the standpoint of external and internal interactions between systems of skin blood flow regulation, based on a comparison of couplings in normal and pathological conditions, including models of pathologies on animals, are considered. The factors and mechanisms of vasomotor regulation, among them receptors and signaling events in endothelial and smooth muscle cells considered as models of microvessels are discussed. Attention was drawn to the disturbance of Ca2+-dependent regulation of coupling between vascular cells and NO-dependent regulation of vasodilation in diabetes mellitus. The main mechanisms of insulin resistance in type 2 DM are considered to be a defect in the number of insulin receptors and impaired signal transduction from the receptor to phosphatidylinositol-3-kinase and downstream targets. Reactive oxygen species plays an important role in vascular dysfunction in hyperglycemia. It is assumed that the considered molecular and cellular mechanisms of microhemodynamics regulation are involved in the formation of skin blood flow oscillations. Parameters of skin blood microcirculation can be used as diagnostic and prognostic markers for assessing the state of the body.
Collapse
Affiliation(s)
- I. V. Tikhonova
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| | - A. A. Grinevich
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| | - A. V. Tankanag
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| | - V. G. Safronova
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| |
Collapse
|
6
|
Extracellular Vesicles Isolated From Hypoxia-Preconditioned Adipose-Derived Stem Cells Promote Hypoxia-Inducible Factor 1α-Mediated Neovascularization of Random Skin Flap in Rats. Ann Plast Surg 2022; 89:225-229. [PMID: 35943229 DOI: 10.1097/sap.0000000000003266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Random flaps are widely used for wound repair. However, flap necrosis is a serious complication leading to the failure of operation. Our previous study demonstrated a great proangiogenic potential of hypoxia-treated adipose-derived stem cells-extracellular vesicles (HT-ASC-EVs). Thus, we aim to evaluate the effect of HT-ASC-EVs in the survival and angiogenesis of random skin flap in rats. METHODS Adipose-derived stem cells-extracellular vesicles were respectively isolated from adipose-derived stem cell culture medium of 3 donors via ultracentrifugation. The expression of hypoxia-inducible factor 1α (HIF-1α) and proangiogenic potential of HT-ASC-EVs and ASC-EVs were compared by co-culturing with human umbilical vein endothelial cells. Forty male Sprague-Dawley rats were randomly divided into 3 group (n = 10/group). A 9 × 3-cm random skin flap was separated from the underlying fascia with both sacral arteries sectioned on each rat. The survival and angiogenesis of flaps treated by ASC-EVs or HT-ASC-EVs were also compared. Laser Doppler flowmetry and immunohistochemistry were used to evaluate skin perfusion and angiogenesis of skin flaps on postoperative day 7. RESULTS Hypoxia-treated adipose-derived stem cells-extracellular vesicles further improve the proliferation, migration, tube formation with upregulated HIF-1α, and VEGF expression of human umbilical vein endothelial cells in vitro, compared with ASC-EVs. In vivo, postoperatively injecting HT-ASC-EVs suppressed necrosis rate (29.1 ± 2.8% vs 59.2 ± 2.1%) and promoted the angiogenesis of skin flap including improved skin perfusion (803.2 ± 24.3 vs 556.3 ± 26.7 perfusion unit), increased number of CD31-positive cells, and upregulated expression of HIF-1α in vascular endothelium on postoperative day 7, compared with ASC-EVs. CONCLUSIONS Intradermal injecting HT-ASC-EVs improve the survival of random skin flap by promoting HIF-1α-mediated angiogenesis in rat model.
Collapse
|
7
|
Teng Y, Hao Y, Liu H, Shan M, Chen Q, Song K, Wang Y. Histology and Vascular Architecture Study of Keloid Tissue to Outline the Possible Terminology of Keloid Skin Flaps. Aesthetic Plast Surg 2022; 46:985-994. [PMID: 35169912 DOI: 10.1007/s00266-022-02775-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/04/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND Using the keloid "epidermis" to cover a wound is widely used during treatment for keloids. Many flap terminologies have been used in literature. However, the definition of the flap is not well established. Here, we refined the definition of the flap and associated terminology and explored the survival mechanism of the 'flap' through histological analysis and blood supply studying. METHODS Histology and vascular study of keloid was carried out with keloid and its surrounding normal skin tissue which were collected from keloid patients following keloid resection operations. The histological structures and thicknesses of epidermal and subepidermal of the keloids were analyzed and measured using hematoxylin & eosin (H&E) staining. Vascular density and blood perfusion in the subepidermal layer of keloids (KDS) were analyzed using CD31 immunohistochemical staining and a laser speckle contrast imaging system (LSCI), respectively. The vascular network in KDS was visualized by CD31 immunofluorescence staining and three-dimensional reconstruction. RESULTS 29 pieces of keloid and its surrounding normal skin tissue sample from ten patients were collected. Keloid samples were about 2 cm wide and 5 cm long. The normal skin samples were about 2 to 3 mm in width. The thickness of epidermal layer of keloids was (136.4 ± 35.3) μm, and the thickness of epidermal layer of surrounding normal skin was (78.8 ± 13.9) μm. There was statistical thickness difference between the two layers, t(20) = 7.469, P < 0.001. The total thickness of keloid epidermal and subepidermal layers was 391.4 ± 2.3 μm. The vascular density (13.9 ± 3.4/field) and blood flow perfusion (132.7 ± 31.3) PU in KDS were greater than that of surrounding normal skin (7.8 ± 2.3/field, 73.9 ± 17.9 PU), P < 0.001. Horizontally distributed vessels with several vertical branches were observed in 3D vascular network reconstruction. CONCLUSION The epidermal layer of keloid is thicker than that of surrounding normal skin. There is a vascular network structure under it. The vessels mainly locate at a depth of about 150 to 400 μm from the surface of keloid epidermis, randomly distribute and run parallel to the epidermis. Based on these characteristics which may ensure an adequate blood supply, we propose the concept of a "keloid subepidermal vascular network flap." LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
8
|
Hanna MK. The contribution of preconditioning hyperbaric oxygen for complex re-operative surgery of bladder exstrophy and epispadias. A case study of 11patients. J Pediatr Urol 2021; 17:656.e1-656.e8. [PMID: 34400100 DOI: 10.1016/j.jpurol.2021.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Multiple surgeries on patients born with bladder exstrophy and epispadias (BEE) especially when complicated by postoperative infections results in varying degrees of scarring of the tissues and decreased vascularity. When further surgery for these patients is contemplated the tissue ischemia may result in poor healing and additional complications. Problem wounds due to arterial insufficiency mainly in diabetic ulcers and following therapeutic radiation are commonly treated with hyperbaric oxygen therapy (HBOT). It was hypothesized that the pathologic features of severe fibrosis and tissue ischemia in repeat BEE surgery are similar to those of post radiotherapy patients and would therefore benefit from HBOT. OBJECTIVES Examine the role of preconditioning and postoperative adjunctive hyperbaric oxygen therapy in repeat surgery of complex cases of bladder exstrophy and epispadias who underwent multiple failed surgical repairs (6-10 operations). STUDY DESIGN Review of the records of selected eleven patient (9 males and 2 females), the ages varying between 2 and 30 years, 9 patients were born with bladder exstrophy and 2 with epispadias. All patients underwent multiple surgeries often complicated by postoperative wound infection and break down of their repairs. They were referred by other experienced surgeons for further correction of abnormalities which included recurrent abdominal wall hernias following wound dehiscence and repeat repairs of the scarred and deformed genitalia (figure) following multiple surgical failures. For this high morbidity group of patients, the protocol which was adopted included pre-operative 20 dives of HBOT at 1.5 for the young child and 2 atmospheric pressures for the older patients followed by 5-10 dives postoperatively. RESULTS All patients tolerated the HBO without side effects, and all achieved a satisfactory surgical outcome of the repairs of the large recurrent abdominal hernias, and reconstruction of the external genitalia (figure). Postoperative evaluation was conducted by the parents or patient and the surgeon using a modified scoring system. 3/11 encountered minor complications, suture tracks (2 pts.) and hypertrophic scar which faded over one year (1 pt) CONCLUSIONS: Preconditioning HBO may be utilized as an adjunctive treatment and preventive strategy to activate the protective mechanisms of neovascularization which would reduce the potential morbidity and improve wound healing of compromised and less vascularized tissues of selected patients born with BEE who endured multiple surgical complication.
Collapse
Affiliation(s)
- Moneer K Hanna
- New York Presbyterian Weill-Cornell Medical Center, New York, USA.
| |
Collapse
|
9
|
Distal Arterialized Venous Supercharging Improves Perfusion and Survival in an Extended Dorsal Three-Perforasome Perforator Flap Rat Model. Plast Reconstr Surg 2021; 147:957e-966e. [PMID: 34019505 DOI: 10.1097/prs.0000000000007990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Perforator flaps are commonly applied for a variety of skin defects. Many strategies (e.g., hyperbaric oxygen and preconditioning) have been investigated to improve flap survival, but a postoperative 2.03 to 18.2 percent flap necrosis frequency remains a major complication. The authors hypothesized that a distal arterialized venous supercharged (DAVS) flap procedure might improve perfusion and survival in an extended three-perforasome perforator flap rat model and rescue flap ischemia intraoperatively. METHODS One hundred twenty male Sprague-Dawley rats (200 to 300 g) were divided into the thoracodorsal artery (TDA) flap group and the DAVS flap group (n = 60 per group). An approximately 11 × 2.5-cm2 flap based on the TDA perforasome was designed in the TDA flap. A DAVS flap was designed based on the TDA flap and supercharged by anastomosing the rat caudal artery with the deep circumflex iliac vein. At postoperative times 1, 3, 6, and 12 hours and 1, 3, 5, and 7 days, perfusion and angiography were compared. On day 7, flap viability and angiogenesis were assessed using histology and Western blotting. RESULTS The DAVS flap showed a higher survival rate compared with the TDA flap (100 percent versus 81.93 ± 5.38 percent; p < 0.001). All blood flow ratios of deep circumflex iliac artery to TDA perforasome and of choke zone II to choke zone I were higher in the DAVS flap (all p < 0.05). Angiography qualitatively revealed that choke vessels in choke zone II dilated earlier and extensively in the DAVS flap group. CD34+ vessels (68.66 ± 12.53/mm2 versus 36.82 ± 8.99/mm2; p < 0.001) and vascular endothelial growth factor protein level (0.22 ± 0.03 versus 0.11 ± 0.03; p < 0.001) were significantly increased in the DAVS flap group. CONCLUSIONS The DAVS procedure improves three-perforasome perforator flap survival and can be used for rescuing flap ischemia intraoperatively. Further study is needed before possible clinical adoption for reconstructive operations.
Collapse
|
10
|
Fontoura-Andrade JL, Pinto LM, Carneiro FP, Sousa JBD. Effect of preconditioning and postoperative hyperbaric oxygen therapy on colonic anastomosis healing with and without ischemia in rats. Acta Cir Bras 2020; 35:e202000503. [PMID: 32578671 PMCID: PMC7310584 DOI: 10.1590/s0102-865020200050000003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/11/2020] [Indexed: 01/26/2023] Open
Abstract
Purpose To investigate the effect of hyperbaric oxygen therapy on colonic anastomosis healing with and without ischemia in rats. Methods Forty female rats underwent segmental resection of 1 cm of the left colon followed by end-to-end anastomosis. They were randomly assigned to four groups (n=10 each), a sham group; two groups were submitted to Hyperbaric Oxygen therapy (HBOT) with and without induced ischemia and the induced ischemia group without HBOT. The HBOT protocol evaluated was 100% O2 at 2.4 Atmosphere absolute pressure (ATA) for 60 minutes, two sessions before as a preconditioning protocol and three sessions after the operation. Clinical course and mortality were monitored during all experiment and on the day of euthanasia on the fourth day after laparotomy. Macroscopic appearance of the abdominal cavity were assessed and samples for breaking strength of the anastomosis and histopathological parameters were collected. Results There was no statistically significant difference in mortality or anastomosis leak between the four experimental groups. Anastomosis breaking strength was similar across groups. Conclusion The HBOT protocol tested herein at 2.4 ATA did not affect histopathological and biomechanical parameters of colonic anastomotic healing, neither the clinical outcomes death and anastomosis leak on the fourth day after laparotomy.
Collapse
|
11
|
Cui H, Feng Y, Shu C, Yuan R, Bu L, Jia M, Pang B. Dietary Nitrate Protects Against Skin Flap Ischemia-Reperfusion Injury in Rats via Modulation of Antioxidative Action and Reduction of Inflammatory Responses. Front Pharmacol 2020; 10:1605. [PMID: 32038262 PMCID: PMC6987438 DOI: 10.3389/fphar.2019.01605] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/10/2019] [Indexed: 01/09/2023] Open
Abstract
Dietary nitrate, found abundant in green vegetables, can be absorbed into the blood and be converted to nitric oxide (NO) in the body. Dietary nitrate has been proved to have many positive physiological functions in the body. Here, we evaluated the therapeutic effects of dietary nitrate on skin flap recovery following ischemia reperfusion (IR). Wistar rats were pretreated with nitrate from one week prior to ischemia to the end of reperfusion. It was found that oral administration of nitrate increased serum nitrate and nitrite levels, protected cells from apoptosis, and attenuated flap tissue edema. In the meantime, the oxidative stress marker malondialdehyde was reduced, while the activities of antioxidant enzymes were restored after nitrate treatment. Moreover, the macrophage and neutrophil infiltration in the flap was significantly attenuated by nitrate supplementation, as were the pro-inflammatory cytokines. In sum, we found that oral administration of nitrate can attenuate skin flap IR injury through the regulation of oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Hao Cui
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Yuanyong Feng
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Chuanliang Shu
- Department of Stomatology, The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Rongtao Yuan
- Qingdao Municipal Hospital, Affiliated to Shandong University, Qingdao, China
| | - Lingxue Bu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Muyun Jia
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Baoxing Pang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Hyperbaric Oxygen Preconditioning Can Reduce Postabdominoplasty Complications: A Retrospective Cohort Study. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2417. [PMID: 31772875 PMCID: PMC6846320 DOI: 10.1097/gox.0000000000002417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/17/2019] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. Hyperbaric oxygen therapy (HBOT) can improve wound healing and has been found to have positive preconditioning effects in animal models. Among esthetic surgical procedures, abdominoplasty poses the highest rate of postoperative complications. The aim of this study was to evaluate the effect of preoperative HBOT as a preconditioning treatment for expected postsurgical complications.
Collapse
|
13
|
Lin D, Wu H, Zhou Z, Tao Z, Gao W, Jia T. The Effect of Leonurine on Multiterritory Perforator Flap Survival in Rats. J Surg Res 2019; 245:453-460. [PMID: 31445497 DOI: 10.1016/j.jss.2019.07.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Leonurine (Leo), a natural active compound of Leonurus cardiaca, has been shown to possess various biological activities. However, it is not known whether Leo promotes perforator flap survival. METHODS In this study, a perforator flap was outlined in the rat dorsum. The rats that survived surgery were divided randomly to control and Leo groups (n = 36 per group). Flap viability, flap perfusion, and level of protein linked with oxidative stress, cell apoptosis, and angiogenesis were evaluated. RESULTS Relative to control group, the Leo group showed significantly higher the flap survival percentage (70.5% versus 90.2%, P < 0.05) and blood perfusion (197.1 versus 286.3, P < 0.05). Leo also increased 1.8-fold mean vessel density and upregulated 2.1-fold vascular endothelial growth factor protein expression compared with the control group, both of which indicate increased angiogenesis. Moreover, it significantly inhibited apoptosis by lowering caspase-3 activity. Superoxide dismutase expression was remarkably elevated in Leo group compared with the control group (56.0 versus 43.2 U/mg/protein, P < 0.01), but malondialdehyde quantities were significantly lower in the Leo group compared with control group (41.9 versus 57.5 nmol/mg/protein, P < 0.05). CONCLUSIONS Leo may serve as an effective drug for improving perforator flap survival in rats via antioxidant and antiapoptotic mechanisms and promotion of angiogenesis.
Collapse
Affiliation(s)
- Damu Lin
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongqiang Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zongwei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhenyu Tao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Tanghong Jia
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| |
Collapse
|
14
|
Wang L, Wu H, Yan H, Dong X, He Z, Ding J, Gao W. Effect of a nondominant perforator on multiterritory perforator flap survival in rats. Microsurgery 2019; 39:441-446. [PMID: 31112634 DOI: 10.1002/micr.30471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND During flap surgery, the dominant perforator is usually selected as the pedicle. This study investigated the effect of a nondominant perforator on multiterritory perforator flap survival. METHODS The deep circumflex iliac artery perforator flap (DCIA flap) and intercostal artery perforator flap (ICA flap) were performed (n = 12). Only the pedicle was different between the two flaps. The DCIA flap was based on the right and peripheral DCIA with three dynamic and two potential perforasomes. The ICA flap was based on the right and central ICA with five dynamic perforasomes. All adjacent perforators were ligated except the pedicle. On postoperative day 7, flap viability, angiography findings, and perfusion were compared. RESULTS Even though the diameter of DCIA (mm) was larger than that of ICA (0.49 ± 0.03 vs. 0.4 ± 0.04; p < .05), the ICA flap survival rate (%) was higher than that of DCIA flap (99.5 ± 0.7 vs. 83.8 ± 3.9; p < .001). Based on a dominant perforator, a necrotic area was observed in the potential perforasomes of the DCIA flap. The choke vessels between the anatomical and dynamic perforasomes dilated postoperatively in the two flaps, whereas the others did not. The perfusion (PU) differences between the DCIA and ICA flaps in the dynamic perforasomes were nonsignificant (average, 342.4 ± 9.1 vs. 347.3 ± 7.3; p > .05). CONCLUSION Increasing the number of dynamic perforasomes had no effect on flap survival, even based on a nondominant perforator. And the pedicle position affected flap survival.
Collapse
Affiliation(s)
- Long Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University. The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hongqiang Wu
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University. The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hede Yan
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University. The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaoming Dong
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University. The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhiling He
- Department of Hand Surgery, The 94th Hospital of the Chinese People's Liberation Army, Nanchang, China
| | - Jian Ding
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University. The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University. The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Wang J, Ji E, Lin C, Wang L, Dai L, Gao W. Effects of bradykinin on the survival of multiterritory perforator flaps in rats. World J Surg Oncol 2019; 17:44. [PMID: 30813916 PMCID: PMC6394035 DOI: 10.1186/s12957-019-1570-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/27/2019] [Indexed: 02/08/2023] Open
Abstract
Background Bradykinin, a vasoactive peptide, has many biological functions. For example, it accelerates angiogenesis. Thus, we studied the effects of bradykinin on the survival of perforator flaps. Methods Averagely, 50 male Sprague–Dawley rats were divided into control and bradykinin groups and underwent procedures to the multiterritory perforator flap. Areas of flap survival were tested 7 days later. Flap perfusion was evaluated by laser Doppler imaging. We assessed the extent of autophagy by determining LC3-II/I, Beclin 1, and p62. Flap angiogenesis was assessed by immunohistochemistry and H&E staining. We measured the level of vascular endothelial growth factor (VEGF) protein using western blot. We assessed oxidative stress by measuring the activity of superoxide dismutase (SOD) and malondialdehyde (MDA) levels. The apoptotic index was also evaluated by western blot, and we determined nitric oxide (NO) production using an NO assay kit. Results The bradykinin group exhibited significantly larger areas of flap survival, higher blood supply, and more neovascularization. The bradykinin group also had higher SOD activity, higher VEGF expression and NO content, and reduced MDA compared to the control group. Rats treated with bradykinin also had lower levels of apoptosis and autophagy relative to the control group. Conclusion Our results suggest that bradykinin promotes the survival of multiterritory perforator flaps by increasing angiogenesis, promoting the release of NO, suppressing apoptosis, reducing oxidative stress, and inhibiting autophagy.
Collapse
Affiliation(s)
- Jieke Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Encheng Ji
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Chen Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Long Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Li Dai
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Weiyang Gao
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China.
| |
Collapse
|
16
|
Ho WT. Preconditioning and postoperative hyperbaric oxygen therapy to reduce skin flap erosion after osmidrosis surgery. J Plast Reconstr Aesthet Surg 2019; 72:685-710. [PMID: 30660468 DOI: 10.1016/j.bjps.2019.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Wen-Tsao Ho
- Department of Dermatology, Ho Wen Tsao Skin Clinic, No.179, Sec.2, Wenhua 3rd Rd., Linkou District, New Taipei City, Taiwan, ROC.
| |
Collapse
|
17
|
Ballestín A, Casado JG, Abellán E, Vela FJ, Álvarez V, Usón A, López E, Marinaro F, Blázquez R, Sánchez-Margallo FM. Ischemia-reperfusion injury in a rat microvascular skin free flap model: A histological, genetic, and blood flow study. PLoS One 2018; 13:e0209624. [PMID: 30589864 PMCID: PMC6307726 DOI: 10.1371/journal.pone.0209624] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/07/2018] [Indexed: 12/29/2022] Open
Abstract
Ischemia reperfusion injury is associated with tissue damage and inflammation, and is one of the main factors causing flap failure in reconstructive microsurgery. Although ischemia-reperfusion (I/R) injury is a well-studied aspect of flap survival, its biological mechanisms remain to be elucidated. To better understand the biological processes of ischemia reperfusion injury, and to develop further therapeutic strategies, the main objective of this study was to identify the gene expression pattern and histological changes in an I/R injury animal model. Fourteen rats (n = 7/group) were randomly divided into control or ischemia-reperfusion group (8 hours of ischemia). Microsurgical anastomoses were objectively assessed using transit-time-ultrasound technology. Seven days after surgery, flap survival was evaluated and tissue samples were harvested for anatomopathological and gene-expression analyses.The I/R injury reduced the survival of free flaps and histological analyses revealed a subcutaneous edema together with an inflammatory infiltrate. Interestingly, the Arginase 1 expression level as well as the ratio of Arginase 1/Nitric oxide synthase 2 showed a significant increase in the I/R group. In summary, here we describe a well-characterized I/R animal model that may serve to evaluate therapeutic agents under reproducible and controlled conditions. Moreover, this model could be especially useful for the evaluation of arginase inhibitors and different compounds of potential interest in reconstructive microsurgery.
Collapse
Affiliation(s)
- Alberto Ballestín
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- * E-mail:
| | - Javier G. Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Elena Abellán
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - F. Javier Vela
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Alejandra Usón
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Rebeca Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Francisco Miguel Sánchez-Margallo
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| |
Collapse
|
18
|
Chen G, Shen H, Zang L, Su Z, Huang J, Sun Y, Wang H. Protective effect of luteolin on skin ischemia-reperfusion injury through an AKT-dependent mechanism. Int J Mol Med 2018; 42:3073-3082. [PMID: 30280183 PMCID: PMC6202092 DOI: 10.3892/ijmm.2018.3915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
Cutaneous ischemia-reperfusion (I/R) injury is one of the most crucial problems in flap surgery, which affects the survival of the skin flap and patient prognosis, luteolin, a plant derived flavonoid, has previously been shown to exert a variety of beneficial effects for reducing I/R injury in several organs. The aim of the present study was to evaluate the anti-inflammatory and anti-oxidative stress effects of luteolin on cutaneous I/R injury. The in vitro study were performed using a permanent human immortalized epidermal keratinocyte cell line (HaCaT), cells were cultured in the presence of luteolin and were then treated with hydrogen peroxide, the cell viability, mitochondrial membrane potential and the cell survival/apoptosis related signaling pathway activation were assessed to investigate the cytoprotective effects of luteolin. For in vivo experiments, skin flap I/R injury animal model was established in Sprague-Dawley rats, by measuring the area of flap survival, analyzing the expression of pro-inflammatory cytokine and evaluation of the histological changes in the skin tissue, the protective effects of luteolin on skin I/R injury were investigated. The function of protein kinase B (AKT) and heme oxygenase-1 (HO-1) activation on luteolin mediated I/R injury protection was assessed by administration of phosphoinositide-3-kinase/AKT inhibitor LY294002 and HO-1 inhibitor ZNPP. The results showed that luteolin treatment significantly increased the viability of HaCaT cells upon exposure to hydrogen peroxide, and the administration of luteolin in vivo significantly improved skin flap survival in the I/R injury rat model. The mechanisms underlying these beneficial effects included increased phosphoinositide-3-kinase/protein kinase B activation, improved expression of antioxidant enzyme, and scavenging the cytotoxic effects of reactive oxygen species (ROS). Taken together, the results suggested that luteolin preconditioning yielded significant protection against cutaneous I/R injury by protecting skin keratinocytes from ROS-induced damage.
Collapse
Affiliation(s)
- Gang Chen
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Hugang Shen
- Department of Esthetic Plastic Surgery, The First Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu 210029, P.R. China
| | - Linlin Zang
- Medical Laboratory, Qingdao HaiCi Medical Group, Qingdao, Shandong 266000, P.R. China
| | - Zhonglan Su
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jilong Huang
- Department of Esthetic Plastic Surgery, The First Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu 210029, P.R. China
| | - Yong Sun
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Hongwei Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
19
|
Zhang M, Liu S, Guan E, Liu H, Dong X, Hao Y, Zhang X, Zhao P, Liu X, Pan S, Wang Y, Wang X, Liu Y. Hyperbaric oxygen therapy can ameliorate the EMT phenomenon in keloid tissue. Medicine (Baltimore) 2018; 97:e11529. [PMID: 30024539 PMCID: PMC6086457 DOI: 10.1097/md.0000000000011529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/21/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hyperbaric oxygen therapy (HBOT) has been widely used in the clinical setting. In this study, HBOT therapy was evaluated for its ability to ameliorate the epithelial-to-mesenchymal transition (EMT) phenomenon in keloid tissue. METHODS Keloid patients were randomly divided into two groups: keloid patients (K group, 9 patients) and keloid patients receiving HBOT (O group, 9 patients). A third group with normal skin (S group, 9 patients) was established for control. Before HBOT and surgery, a laser Doppler flowmeter was used to measure the keloid blood supply of patients in the O group. Hematoxylin and eosin (H&E) staining was used to observe morphology. E-cadherin, ZO-1, vimentin, fibronectin, vascular endothelial growth factor (VEGF), and hypoxia inducible factor (HIF)-1α were measured by immunofluorescence staining and Western blot analysis. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to evaluate the mRNA expression level of these factors as well. RESULTS In the O group, keloid blood perfusion was significantly reduced after patients received HBOT. Compared with the K group, lower expression levels of vimentin, vibronectin, VEGF, and HIF-1α were observed in the O group, whereas the expression of E-cadherin and ZO-1 was significantly higher. The mRNA expression of E-cadherin and ZO-1 was also increased after HBOT. CONCLUSIONS The expression levels of factors related to the EMT phenomenon were significantly reversed in keloid patients after they received HBOT, indicating that HBOT may be an effective therapy against the EMT phenomenon in keloid patients.
Collapse
Affiliation(s)
- Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital
| | - Shu Liu
- Department of Plastic Surgery, China Meitan General Hospital Affiliated to North China University of Science and Technology, Beijing
| | - Enling Guan
- Department of Ear-Nose-Throat, Qingdao Huangdao District Hospital of Traditional Chinese Medicine, Qingdao, Shandong
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital
| | - Xinhang Dong
- Department of Plastic Surgery, Peking Union Medical College Hospital
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital
| | - Xin Zhang
- College of Life Science and Bioengineering, Beijing University of Technology
| | - Pengxiang Zhao
- College of Life Science and Bioengineering, Beijing University of Technology
| | - Xuehua Liu
- Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital
| | - Shuyi Pan
- Department of Hyperbaric Oxygen, Navy General Hospital
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital
| | - Xiaojun Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital
| | - Yifang Liu
- International education college, Beijing Vocational College of Agriculture, Beijing, China
| |
Collapse
|
20
|
Keloid Skin Flap Retention and Resurfacing in Facial Keloid Treatment. Aesthetic Plast Surg 2018; 42:304-309. [PMID: 28791472 DOI: 10.1007/s00266-017-0949-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Facial keloids commonly occur in young patients. Multiple keloid masses often converge into a large lesion on the face, representing a significant obstacle to keloid mass excision and reconstruction. We describe a new surgical method that excises the keloid mass and resurfaces the wound by saving the keloid skin as a skin flap during facial keloid treatment. METHODS Forty-five patients with facial keloids were treated in our department between January 2013 and January 2016. Multiple incisions were made along the facial esthetic line on the keloid mass. The keloid skin was dissected and elevated as a skin flap with one or two pedicles. The scar tissue in the keloid was then removed through the incision. The wound was covered with the preserved keloid skin flap and closed without tension. Radiotherapy and hyperbaric oxygen were applied after surgery. Patients underwent follow-up examinations 6 and 12 months after surgery. RESULTS Of the 45 total patients, 32 patients were cured and seven patients were partially cured. The efficacy rate was 88.9%, and 38 patients (84.4%) were satisfied with the esthetic result. CONCLUSION We describe an efficacious and esthetically satisfactory surgical method for managing facial keloids by preserving the keloid skin as a skin flap. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
21
|
Stromal Cell-Derived Factor-1 α Alleviates Calcium-Sensing Receptor Activation-Mediated Ischemia/Reperfusion Injury by Inhibiting Caspase-3/Caspase-9-Induced Cell Apoptosis in Rat Free Flaps. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8945850. [PMID: 29568770 PMCID: PMC5820583 DOI: 10.1155/2018/8945850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/21/2017] [Accepted: 10/15/2017] [Indexed: 12/02/2022]
Abstract
Surgical flaps are frequently affected by ischemia/reperfusion (I/R) injury. Calcium-sensing receptor (CaSR) and stromal cell-derived factor-1α (SDF-1α) are closely associated with myocardial I/R injury. This study was performed to evaluate the feasibility of applying SDF-1α to counteract CaSR activation-mediated I/R injury in ischemic free flaps. Free flaps that underwent ischemia for 3 h were equally randomized into five groups: CaCl2, NPS2143 + CaCl2, SDF-1α + CaCl2, AMD3100 + SDF-1α + CaCl2, and normal saline. The free flaps were harvested to evaluate flap necrosis and neovascularization after 2 h or 7 d of reperfusion. p-CaSR/CaSR was extensively expressed in vascular endothelial cells of free flaps after I/R injury, and activation of the SDF-1α/CXCR4 axis and NPS2143 could reduce the expression of cleaved caspase-3, caspase-9, FAS, Cyt-c, and Bax and increase Bcl-2 expression; the opposite was true after CaSR activation. Interestingly, initiation of the SDF-1α/CXCR4 axis might abrogate CaSR activation-induced I/R injury through enhancement of microvessel density. In conclusion, CaSR might become a novel therapeutic target of free flaps affected by I/R injury. Activation of the SDF-1α/CXCR4 axis and NPS2143 could counteract CaSR activation-mediated I/R injury and promote free flap survival through inhibition of caspase-3/caspase-9-related cell apoptosis and enhancement of neovascularization.
Collapse
|
22
|
Detrimental effect of Hypoxia-inducible factor-1α-induced autophagy on multiterritory perforator flap survival in rats. Sci Rep 2017; 7:11791. [PMID: 28924179 PMCID: PMC5603514 DOI: 10.1038/s41598-017-12034-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/01/2017] [Indexed: 01/21/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) plays a key role in angiogenesis, improves flap survival, and activates autophagy. The effect of HIF-1α-induced autophagy is still debatable. Thus, we investigated the effect of HIF-1α-induced autophagy on multiterritory perforator flap survival. In this study, 99 male Sprague-Dawley rats received multiterritory perforator flap procedure and were divided into three groups with 33 each. The dimethyloxalylglycine (DMOG) plus 3-methyladenine (3-MA) group received intraperitoneal injection of DMOG (40 mg/kg) and 3-MA (10 mg/kg). The DMOG group and control group received comparative DMOG and saline respectively. On postoperative day (POD) 7, HIF-1α’s activities of flap survival and perfusion improvement were confirmed in DMOG group, however, its positive effects were further enhanced by co-administration of autophagy inhibitor, 3-MA. On POD 1, vascular endothelial growth factor, mean microvascular density and blood perfusion were not affected by HIF-1α up-regulation or autophagy inactivation. However, HIF-1α-induced autophagy augments apoptosis and oxidative stress. The increased level of apoptosis and oxidative stress was reversed by 3-MA and resulted in further flap survival improvement. In conclusion, HIF-1α-induced autophagy has a detrimental effect on multiterritory perforator flap survival and the flap survival was determined by the combined effects of ischemia and reperfusion injury.
Collapse
|
23
|
Francis A, Baynosa R. Ischaemia-reperfusion injury and hyperbaric oxygen pathways: a review of cellular mechanisms. Diving Hyperb Med 2017. [PMID: 28641323 DOI: 10.28920/dhm47.2.110-117] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ischaemia-induced tissue injury has wide-ranging clinical implications including myocardial infarction, stroke, compartment syndrome, ischaemic renal failure and replantation and revascularization. However, the restoration of blood flow produces a 'second hit' phenomenon, the effect of which is greater than the initial ischaemic event and characterizes ischaemia-reperfusion (IR) injury. Some examples of potential settings of IR injury include: following thrombolytic therapy for stroke, invasive cardiovascular procedures, solid organ transplantation, and major trauma resuscitation. Pathophysiological events of IR injury are the result of reactive oxygen species (ROS) production, microvascular vasoconstriction, and ultimately endothelial cell-neutrophil adhesion with subsequent neutrophil infiltration of the affected tissue. Initially thought to increase the amount of free radical oxygen in the system, hyperbaric oxygen (HBO) has demonstrated a protective effect on tissues by influencing the same mechanisms responsible for IR injury. Consequently, HBO has tremendous therapeutic value. We review the biochemical mechanisms of ischaemia-reperfusion injury and the effects of HBO following ischaemia-reperfusion.
Collapse
Affiliation(s)
- Ashish Francis
- Division of Plastic Surgery, Department of Surgery, University of Nevada School of Medicine, 1701 W Charleston Blvd, Suite 400, Las Vegas, NV 89102, USA,
| | - Richard Baynosa
- Division of Plastic Surgery, Department of Surgery, University of Nevada School of Medicine, Las Vegas, USA
| |
Collapse
|
24
|
Leng X, Fan Y, Wang Y, Sun J, Cai X, Hu C, Ding X, Hu X, Chen Z. Treatment of Ischemia-Reperfusion Injury of the Skin Flap Using Human Umbilical Cord Mesenchymal Stem Cells (hUC-MSCs) Transfected with "F-5" Gene. Med Sci Monit 2017; 23:2751-2764. [PMID: 28586321 PMCID: PMC5469319 DOI: 10.12659/msm.905216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Recent studies have shown that skin flap transplantation technique plays an important role in surgical procedures. However, there are many problems in the process of skin flap transplantation surgeries, especially ischemia-reperfusion injury, which directly affects the survival rate of the skin flap and patient prognosis after surgeries. Material/Methods In this study, we used a new method of the “stem cells-gene” combination therapy. The “F-5” gene fragment of heat shock protein 90-α (Hsp90-α) was transfected into human umbilical cord mesenchymal stem cells (hUC-MSCs) by genetic engineering technique. Results The synergistic effects of “F-5” gene and hUC-MSCs in the treatment of ischemia-reperfusion injury of the skin flap were confirmed by histochemical and immunohistochemical methods. Conclusions This study showed that the hUC-MSCs transfected with “F-5” gene can effectively improve the repair of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiangfeng Leng
- Department of Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yongle Fan
- Department of Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yating Wang
- Department of Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Jian Sun
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, Shandong, China (mainland)
| | - Xia Cai
- Department of Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Chunnan Hu
- Department of Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | | | - Xiaoying Hu
- The Eighth People's Hospital of Qingdao, Qingdao, Shandong, China (mainland)
| | - Zhengyu Chen
- Department of Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
25
|
Lee YK, Nata'atmaja BS, Kim BH, Pak CS, Heo CY. Protective effect of telomerase-based 16-mer peptide vaccine (GV1001) on inferior epigastric island skin flap survivability in ischaemia-reperfusion injury rat model. J Plast Surg Hand Surg 2016; 51:210-216. [PMID: 27670432 DOI: 10.1080/2000656x.2016.1235046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Ischaemia-reperfusion injury (IRI) results in oxidative damage and a profound inflammatory reaction, leading to cell death. GV 1001 is a telomerase-based 16-mer peptide vaccine developed against cancer. However, it has also been reported to possess antioxidant and anti-inflammatory properties. The aim of this study was to determine if GV 1001 can reduce the negative effects caused by IRI in a rat skin flap model owing to its anti-oxidant and anti-inflammatory properties. MATERIALS AND METHODS In order to evaluate the effect of GV 1001, 5 × 5 cm2 inferior epigastric artery based island skin flaps were dissected in 39 8-week-old Sprague-Dawley rats weighing 220-270 g. The rats were divided into three groups: (I) non-ischaemic group; (II) IRI with saline; and (III) IRI with 10 mg GV 1001 treatment. Drugs were administered intra-muscularly directly before and after ischaemia. Flap survival area, neutrophil infiltration, cytokine levels (interleukin [IL]-1, IL-6, and tumour necrosis factor-α), malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity were measured. Flap survivability was analysed at 7 days after surgery. RESULTS Flap survival area was significantly larger in group III than in group II. Cytokine release level was also significantly lower in group III. Neutrophil infiltration grade, MDA level, and SOD activity slightly decreased in Group III; however, the changes were not statistically significant. CONCLUSION These results imply that GV 1001 exerts a protective effect against IRI through antioxidant effects, reducing reactive oxygen species, and suppressing the inflammatory cascade.
Collapse
Affiliation(s)
- Yung Ki Lee
- a Department of Plastic & Reconstructive Surgery, College of Medicine , Kyung Hee University , Seoul , Korea
| | - Beta Subakti Nata'atmaja
- b Department of Plastic and Reconstructive Surgery , Dr. Soetomo General Hospital ? Airlangga University School of Medicine , Surabaya , Indonesia
| | - Byung Hwi Kim
- c Department of Biomedical Engineering , Seoul National University College of Medicine , Seoul , Korea
| | - Chang Sik Pak
- d Department of Plastic and Reconstructive Surgery , Seoul National University Bundang Hospital , Seongnam , Korea
| | - Chan Yeong Heo
- c Department of Biomedical Engineering , Seoul National University College of Medicine , Seoul , Korea.,d Department of Plastic and Reconstructive Surgery , Seoul National University Bundang Hospital , Seongnam , Korea
| |
Collapse
|
26
|
Effects of Sanguis Draconis on Perforator Flap Survival in Rats. Molecules 2016; 21:molecules21101262. [PMID: 27681718 PMCID: PMC6273294 DOI: 10.3390/molecules21101262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 11/18/2022] Open
Abstract
Sanguis draconis, a resin known to improve blood circulation, relieve pain, stimulate tissue regeneration, and heal wounds, is widely used in clinical practice. In this study, we prepared an ethanol extract of sanguis draconis (EESD) containing 75.08 mg/g of dracorhodin. The experiment was carried out on 20 rats that were divided into two groups, a control group (n = 10) and an EESD group (n = 10). All the rats underwent a perforator flap surgery, after which post-operative abdominal compressions of EESD were given to the EESD group for seven days, while the control group received saline. Flap survival percentages were determined after seven days, and were found to be significantly higher in the EESD group than in the control group. Results of laser Doppler flowmetry (LDF) showed that perforator flaps in the EESD group had higher perfusion values than those of the control group. The flap tissues were stained with hematoxylin and eosin, followed by immunohistochemical evaluation. Superoxide dismutase (SOD) expression and micro-vessel development markedly increased in the EESD group, while malondialdehyde (MDA) levels decreased. This is the first study to investigate the effect of sanguis draconis on perforator flap survival. Our results demonstrate that sanguis draconis can improve perforator flap survival in rats by promoting microvessel regeneration and blood perfusion.
Collapse
|