1
|
Yang C, Cheng J, Zhu Q, Pan Q, Ji K, Li J. Review of the Protective Mechanism of Paeonol on Cardiovascular Disease. Drug Des Devel Ther 2023; 17:2193-2208. [PMID: 37525853 PMCID: PMC10387245 DOI: 10.2147/dddt.s414752] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/19/2023] [Indexed: 08/02/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death in the world. Paeonol(Pae) is a phenolic component extracted from peony bark, peony root and Xu Changqing. Studies have shown that Pae can protect cardiomyocytes by inhibiting oxidative stress, promoting mitochondrial fusion, regulating mitochondrial autophagy and inhibiting inflammation. In addition, Pae improves ventricular remodeling by inhibiting myocardial apoptosis, hypertrophy and fibrosis. Pae also has a good protective effect on blood vessels by inhibiting vascular inflammation, reducing the expression of adhesion molecules, inhibiting vascular proliferation, and inhibiting oxidative stress and endoplasmic reticulum stress(ERS). Pae also has the effect of anti-endothelial cell senescence, promoting thrombus recanalization and vasodilating. In conclusion, the molecular targets of Pae are very complex, and the relationship between different targets and signaling pathways cannot be clearly explained, which requires us to use systems biology methods to further study specific molecular targets of Pae. It has to be mentioned that the bioavailability of Pae is poor, and some nanotechnology-assisted drug delivery systems improve the therapeutic effect of Pae. We reviewed the protective mechanism of paeonol on the cardiovascular system, hoping to provide help for drug development in the treatment of CVD.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jiawen Cheng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Jun Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
2
|
Wu M, Yu Z, Li X, Zhang X, Wang S, Yang S, Hu L, Liu L. Paeonol for the Treatment of Atherosclerotic Cardiovascular Disease: A Pharmacological and Mechanistic Overview. Front Cardiovasc Med 2021; 8:690116. [PMID: 34368250 PMCID: PMC8333700 DOI: 10.3389/fcvm.2021.690116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
With improvement in living standards and average life expectancy, atherosclerotic cardiovascular disease incidences and mortality have been increasing annually. Paeonia suffruticosa, a natural herb, has been used for the treatment of atherosclerotic cardiovascular disease for thousands of years in Eastern countries. Paeonol is an active ingredient extracted from Paeonia suffruticosa. Previous studies have extensively explored the clinical benefits of paeonol. However, comprehensive reviews on the cardiovascular protective effects of paeonol have not been conducted. The current review summarizes studies reporting on the protective effects of paeonol on the cardiovascular system. This study includes studies published in the last 10 years. The biological characteristics of Paeonia suffruticosa, pharmacological mechanisms of paeonol, and its toxicological and pharmacokinetic characteristics were explored. The findings of this study show that paeonol confers protection against atherosclerotic cardiovascular disease through various mechanisms, including inflammation, platelet aggregation, lipid metabolism, mitochondria damage, endoplasmic reticulum stress, autophagy, and non-coding RNA. Further studies should be conducted to elucidate the cardiovascular benefits of paeonol.
Collapse
Affiliation(s)
- Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoya Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaonan Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Songzi Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanqing Hu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Fisetin Alleviates Neointimal Hyperplasia via PPAR γ/PON2 Antioxidative Pathway in SHR Rat Artery Injury Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6625517. [PMID: 33968295 PMCID: PMC8084648 DOI: 10.1155/2021/6625517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/18/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022]
Abstract
The phenotypic transformation of proliferation and migration in vascular smooth muscle cells (VSMCs) from media to intima is the basic pathology of neointimal hyperplasia after angioplasty in hypertensive patients. Angiotensin II (AngII) stimulates oxidative stress in VSMC, inducing VSMC proliferation and migration, which is a critical factor in both developments of hypertension and angioplasty-induced arterial restenosis. Fisetin, a plant flavonoid polyphenol, has been reported to be antioxidative and potent senolytic. It is unknown whether fisetin would inhibit neointimal hyperplasia. Therefore, we investigated the role of fisetin in neointimal formation in vitro and in vivo. The rat thoracic aortic smooth muscle cells (A10 cells) stimulated by AngII were used as the in vitro neointimal hyperplasia model, where AngII significantly induced the proliferation and migration in A10 cells. We found that fisetin could dose-dependently inhibit the effect of AngII via inducing the expression of an antioxidant, paraoxonase-2 (PON2), whose overexpression could inhibit the proliferation and migration of A10 cells and downexpression by siRNA had the opposite effect. Furthermore, we found the mechanism of fisetin's inducing PON2 expression involved PPARγ. Rosiglitazone, a PPARγ agonist, could increase PON2 expression in A10 cells, while the PPARγ inhibitor prevented the effect of fisetin on PON2. The in vivo neointimal hyperplasia model was established 2 weeks after the carotid artery balloon injury in SHR rats. Administration of fisetin (ip 3 mg/kg daily for 2 weeks) right after the injury significantly increased PON2 expression in the artery, inhibiting ROS production, and efficiently reduced carotid neointimal hyperplasia. These results indicate that fisetin increases the expression of antioxidant PON2 via activation of PPARγ, reducing oxidative stress, inhibiting VSMC proliferation and migration, and alleviates neointimal hyperplasia after intimal injury. PON2 may be a potential therapeutic target to reduce arterial remodeling after angioplasty in hypertensive patients.
Collapse
|
4
|
Dai C, Zhou Y, Zhang B, Ge J. Bletilla striata Polysaccharide Prevents Restenosis of Vein Graft Through Inhibiting Cell Proliferation in Rat Model. Cell Transplant 2020; 29:963689720969173. [PMID: 33267619 PMCID: PMC7873761 DOI: 10.1177/0963689720969173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Coronary artery bypass grafting (CABG) is still the most effective method for the treatment of coronary heart disease at present. However, the restenosis of vein grafts following surgery is an important complication of CABG. In this study, Bletilla striata polysaccharide (BSP), which has anti-inflammatory and antiproliferative properties, was used to prevent or delay the proliferation of venous bridge endothelial cells in a rat model. We transplanted the autogenous jugular vein to the rat carotid artery, and wrapped it with BSP. We carried out experiments in 4 groups (with 24 rats in each group): a high-BSP dose group (the HBG group, 10 mg), a low-BSP dose group (the LBG group, 3 mg), a pluronic gel group (the gel group), and a control group. Vein grafts were then harvested after 3, 14, and 28 days. Following transplantation, we used color Doppler ultrasound to assess the patency of the transplanted vein. The grafted veins were stained with hematoxylin and eosin (H&E) and Masson to measure the thickness of the intima and media of the blood vessels. Proliferating cell nuclear antigen (PCNA) and vascular cell adhesion molecule-l (VCAM-1) were assessed in vein grafts by immunohistochemistry and western blotting. We detected a significant reduction in the proliferation of endothelial cells in the BSP group compared with the control group (P < 0.05). H&E and Masson's trichrome staining showed that the extent of intimal hyperplasia in transplanted veins from the high BSP group (HBS) (67.42 ± 0.54 µm) and low BSP group (LBS) (120.83 ± 1.87 µm) groups was significantly lower than that in the control group (257.03 ± 2.74 µm, P < 0.05), and that the extent of intimal hyperplasia in the HBS group was lower than that in the LBS group (P < 0.05). We found that the effect of BSP was dose-dependent, as high-dose BSP had a more significant inhibitory effect on cell proliferation than low-dose BSP (P < 0.05). The results of immunohistochemistry and western blotting showed that PCNA and VCAM-1 were significantly downregulated in the BSP treatment group on days 14 and 28 (P < 0.05). BSP inhibits the proliferation of vascular endothelial cells and reduces the expression of VCAM-1, thereby inhibiting the restenosis of graft veins.
Collapse
Affiliation(s)
- Chun Dai
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yang Zhou
- Department of Cardiac Surgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, PR China
| | - Bing Zhang
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Jianjun Ge
- Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
5
|
Qi Y, Lu H, Zhao Y, Wang Z, Ji Y, Jin N, Ma Z. Screening and Analysis of Hypolipidemic Components from Shuangdan Capsule Based on Pancreatic Lipase. Curr Bioinform 2020. [DOI: 10.2174/1574893615666200106113910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Some natural pancreatic lipase inhibitors with fewer side effects are proposed.
As a traditional Chinese medicine, Shuangdan Capsule (SDC) has been used for the treatment
of higher lipid in blood, which is mainly composed by Radix Salviae and Peony skin.
Objective:
This work is aimed to investigate the molecular mechanism of the constituents from this
SDC against metabolic disorders, the molecular flexibility and intermolecular interactional characteristics
of these components in the active sites.
Methods:
The small molecules were obtained from the Traditional Chinese Medicine Database
TCM database, the systems-level pharmacological database for Traditional Chinese Medicine
TCMSP server was used to calculate the ADME-related properties. Autodock Vina was used to
perform virtual screening of the selected molecules and to return energy values in several ligand
conformations. The network parameters were calculated using the network analyzer plug-in in Cytoscape.
Results:
The most active six molecules are all enclosed by amino acids ASP79, TYR114,
GLU175, PRO180, PHE215, GLY216 and LUE264, among which, hydrophobic interaction, hydrogen
bond and repulsive forces play extremely important roles. It is worth noting that most of
the local minima of molecular electrostatic potentials on van der Waals (vdW) surface are increased
while the maxima negative ones are decreased simultaneously, implying that the electrostatic
potential tends to be stable. From the topological analysis of the Protein-Protein Interaction
(PPI) network, PNLIP related genes are also proved to be pivotal targets for hyperlipidemia, such
as LPL, AGK, MGLL, LIPE, LIPF and PNPLA2. Further GO analysis indicated that lipophilic
terpenoid compounds may reduce the blood lipid by taking part in the lipid catabolic process, the
extracellular space and the cellular components of the extracellular region part and the triacylglycerol
lipase activity.
Conclusion:
This study provides some useful information for the development and application of
natural hypolipidemic medcines. Further pharmacologically active studies are still needed both in
vivo and in vitro.
Collapse
Affiliation(s)
- Y.J. Qi
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - H.N. Lu
- Department of Life Sciences and Biological Engineering, Northwest Minzu University, Lanzhou, China
| | - Y.M. Zhao
- Department of Chemical Engineering, Northwest Minzu University, Lanzhou, China
| | - Z. Wang
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai, China
| | - Y.J. Ji
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - N.Z. Jin
- Gansu Province Computing Center, Lanzhou, China
| | - Z.R. Ma
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
6
|
Chen JX, Cheng CS, Chen J, Lv LL, Chen ZJ, Chen C, Zheng L. Cynanchum paniculatum and Its Major Active Constituents for Inflammatory-Related Diseases: A Review of Traditional Use, Multiple Pathway Modulations, and Clinical Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7259686. [PMID: 32774428 PMCID: PMC7396087 DOI: 10.1155/2020/7259686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Cynanchum paniculatum Radix, known as Xuchangqing in Chinese, is commonly prescribed in Chinese Medicine (CM) for the treatment of various inflammatory diseases. The anti-inflammatory property of Cynanchum paniculatum can be traced from its wind-damp removing, collaterals' obstruction relieving, and toxins counteracting effects as folk medicine in CM. This paper systematically reviewed the research advancement of the pharmacological effects of Cynanchum paniculatum among a variety of human diseases, including diseases of the respiratory, circulatory, digestive, urogenital, hematopoietic, endocrine and metabolomic, neurological, skeletal, and rheumatological systems and malignant diseases. This review aims to link the long history of clinical applications of Cynanchum paniculatum in CM with recent biomedical investigations. The major bioactive chemical compositions of Cynanchum paniculatum and their associated action mechanism unveiled by biomedical investigations as well as the present clinical applications and future perspectives are discussed. The major focuses of this review are on the diverse mechanisms of Cynanchum paniculatum and the role of its active components in inflammatory diseases.
Collapse
Affiliation(s)
- Jing-Xian Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
- Workstation of Xia Xiang, National Master of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jie Chen
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ling-Ling Lv
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Zi-Jie Chen
- Shanghai Yangpu Hospital of Traditional Chinese Medicine, Shanghai 200090, China
| | - Chuan Chen
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
- Workstation of Xia Xiang, National Master of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
7
|
Wu BJ, Li Y, Ong KL, Sun Y, Johns D, Barter PJ, Rye KA. The Cholesteryl Ester Transfer Protein Inhibitor, des-Fluoro-Anacetrapib, Prevents Vein Bypass-induced Neointimal Hyperplasia in New Zealand White Rabbits. Sci Rep 2019; 9:16183. [PMID: 31700015 PMCID: PMC6838195 DOI: 10.1038/s41598-019-52510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/18/2019] [Indexed: 11/25/2022] Open
Abstract
Coronary artery bypass grafting is among the most commonly performed of all cardiovascular surgical procedures. However, graft failure due to stenosis reduces the long-term benefit of the intervention. This study asks if elevating plasma high density lipoprotein cholesterol (HDL-C) levels by inhibition of cholesteryl ester transfer protein (CETP) activity with des-fluoro-anacetrapib, an analog of the CETP inhibitor anacetrapib, prevents vein bypass-induced neointimal hyperplasia. NZW rabbits were placed on a normal chow diet or chow containing 0.14% (wt/wt) des-fluoro-anacetrapib for 6 weeks. Bypass grafting of the jugular vein to the common carotid artery was performed 2 weeks after starting dietary des-fluoro-anacetrapib supplementation. The animals were euthanised 4 weeks post-bypass grafting. Relative to control, dietary supplementation with des-fluoro-anacetrapib reduced plasma CETP activity by 89 ± 6.9%, increased plasma apolipoprotein A-I levels by 24 ± 5.5%, increased plasma HDL-C levels by 93 ± 26% and reduced intimal hyperplasia in the grafted vein by 38 ± 6.2%. Des-fluoro-anacetrapib treatment was also associated with decreased bypass grafting-induced endothelial expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), endothelial dysfunction, and smooth muscle cell (SMC) proliferation in the grafted vein. In conclusion, increasing HDL-C levels by inhibiting CETP activity is associated with inhibition of intimal hyperplasia in grafted veins, reduced inflammatory responses, improved endothelial function, and decreased SMC proliferation.
Collapse
Affiliation(s)
- Ben J Wu
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia.
| | - Yue Li
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia
| | - Kwok-Leung Ong
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia
| | - Yidan Sun
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | | | - Philip J Barter
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia.
| |
Collapse
|
8
|
Adventitial Collagen Crosslink Reduces Intimal Hyperplasia in a Rabbit Arteriovenous Graft Model. J Surg Res 2019; 246:550-559. [PMID: 31668608 DOI: 10.1016/j.jss.2019.09.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/19/2019] [Accepted: 09/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Intimal hyperplasia (IH) is the initial lesion of vein graft failure after coronary artery bypass grafting. The weak venous wall is likely one of the primary reasons for IH after exposure to the arterial environment. We investigate whether adventitial collagen cross-link by glutaraldehyde (GA) reinforces the venous wall and then reduces IH. MATERIALS AND METHODS Adventitial collagen cross-link by 0.3% GA was performed on the rabbit jugular veins. The degree of cross-link was accessed by tensile test. The jugular vein with or without cross-link was implanted into the carotid artery of rabbit. Vein dilatation at the immediate anastomosis and pathological remodeling of vein graft after 4 wk was assessed. RESULTS Tensile test indicated that the mechanical property of 3-min cross-linked veins more closely resembled that of the carotid artery. In rabbit arteriovenous graft models, 3-min adventitial collagen cross-link limited overdistension (diameter: 3.24 mm versus 4.65 mm, P < 0.01) at the immediate anastomosis and reduced IH (intima thickness: 78.83 μm versus 140.19 μm, P < 0.01) of vein grafts 4 wk after implantation in the cross-link group as compared with the graft group (without cross-link). Compared with the cross-link group, the expression of proliferating cell nuclear antigen and vascular cell adhesion molecule-1 increased significantly at both the mRNA and protein levels within the graft group (P < 0.01), but the expression of smooth muscle-22α decreased significantly (P < 0.01). CONCLUSIONS Adventitial collagen cross-link by GA increased the vessel stiffness and remarkably reduced IH in a rabbit arteriovenous graft model.
Collapse
|
9
|
Paeonol: pharmacological effects and mechanisms of action. Int Immunopharmacol 2019; 72:413-421. [PMID: 31030097 DOI: 10.1016/j.intimp.2019.04.033] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022]
Abstract
Paeonia suffruticosa possesses various medicinal benefits and has been used extensively in traditional oriental medicine for thousands of years. Paeonol is the main component isolated from the root bark of Paeonia suffruticosa. The pharmacological effects of Paeonia suffruticosa are mostly attributed to paeonol. Paeonol injection has been successfully applied in China for nearly 50 years for inflammation/pain-related indications. Currently, the dosage forms of paeonol approved by China Food and Drug Administration include tablet, injection, and external preparations such as ointment and adhesive plaster. So far, the clinical applications of paeonol are mainly focusing on the anti-inflammatory activity. Studies of other pharmacological activities of paeonol are developing rapidly, and which may play an important role in the future. Besides, substantial mechanisms of pharmacological action of paeonol have been clarified in recent years. In this review, we summarize the pharmacological effects anti-inflammatory, neuroprotective, anti-tumor, anti-cardiovascular diseases and associated mechanisms of action of paeonol up to date.
Collapse
|
10
|
Lu L, Qin Y, Chen C, Guo X. Beneficial Effects Exerted by Paeonol in the Management of Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1098617. [PMID: 30524649 PMCID: PMC6247470 DOI: 10.1155/2018/1098617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/08/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022]
Abstract
Atherosclerosis, a chronic luminal stenosis disorder occurred in large and medium arteries, is the principle pathological basis of cardiovascular diseases with the highest morbidity and mortality worldwide. In oriental countries, traditional Chinese medicine Cortex Moutan has been widely used for the treatment of atherosclerosis-related illnesses for thousands of years. Paeonol, a bioactive monomer extracted from Cortex Moutan, is an important pharmacological component responsible for the antiatherosclerotic effects. Numerous lines of findings have established that paeonol offers beneficial roles against the initiation and progression of atherosclerotic lesions through inhibiting proatherogenic processes, such as endothelium damage, chronic inflammation, disturbance of lipid metabolism, uncontrolled oxidative stress, excessive growth, and mobilization of vascular smooth muscle cells as well as abnormality of platelet activation. Investigations identifying the atheroprotective effects of paeonol present substantial evidence for potential clinical application of paeonol as a therapeutic agent in atherosclerosis management. In this review, we summarize the antiatherosclerotic actions by which paeonol suppresses atherogenesis and provide newly insights into its atheroprotective mechanisms and the future clinical practice.
Collapse
Affiliation(s)
- Li Lu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yating Qin
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomei Guo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
11
|
Chen S, Zhang J, Wu L, Wu H, Dai M. Paeonol nanoemulsion for enhanced oral bioavailability: optimization and mechanism. Nanomedicine (Lond) 2018; 13:269-282. [PMID: 29338580 DOI: 10.2217/nnm-2017-0277] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM The aim of this work was to optimize a nanoemulsion formulation and explain its absorption mechanism in improving the oral bioavailability of paeonol. METHOD The bioavailability of paeonol was compared between paeonol nanoemulsion group and paeonol suspension group. The in situ single-pass intestine perfusion method, in vitro everted gut sacs method, Western blot analysis and Caco-2 cell transport studies were used to investigate the absorption mechanism of nanoemulsion. RESULTS Nanoemulsion was proved to enhance the bioavailability of paeonol. P-glycoprotein (P-gp) mediated efflux might be the main reason affecting the oral absorption of paeonol. The prepared nanoemulsion prevented the P-gp-mediated efflux and enhanced the bioavailability of paeonol. CONCLUSION The overall results revealed that nanoemulsion was an effective vehicle to improve the oral bioavailability of paeonol which resulted from the prevention of P-gp efflux probably.
Collapse
Affiliation(s)
- Sufei Chen
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Chnia.,Key Laboratory of Xin'an Medicine, Hefei 230038, China
| | - Jing Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Chnia.,Key Laboratory of Xin'an Medicine, Hefei 230038, China
| | - Lei Wu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Chnia.,Key Laboratory of Xin'an Medicine, Hefei 230038, China
| | - Hongfei Wu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Chnia.,Key Laboratory of Xin'an Medicine, Hefei 230038, China
| | - Min Dai
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Chnia.,Key Laboratory of Xin'an Medicine, Hefei 230038, China
| |
Collapse
|