1
|
Ding Z, Zhang R, Zhu W, Lu Y, Zhu Z, Xie H, Tang W. CTHRC1 serves as an indicator in biliary atresia for evaluating the stage of liver fibrosis and predicting prognosis. Dig Liver Dis 2024:S1590-8658(24)00869-7. [PMID: 39043537 DOI: 10.1016/j.dld.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Liver fibrosis is a pathological feature of biliary atresia (BA). However, both histological fibrosis stage and existing biomarkers fail to predict prognosis at the time of hepatoportonterostomy (HPE). AIMS To explore the role of collagen triple- helix repeat containing-1 (CTHRC1) in BA. METHODS CTHRC1 expression levels were detected and its association with liver fibrosis stage was analyzed in patients with BA. Immunohistochemistry and immunofluorescent analyses were performed to detect the expression and localization of CTHRC1. Epithelial-mesenchymal transition (EMT) and proliferation were analyzed in cholangiocytes treated with recombinant human CTHRC1 protein. Survival analyses were performed to assess the prognostic value of CTHRC1 in patients with BA. RESULTS CTHRC1 was upregulated in BA, and its expression level was positively correlated with fibrosis-related markers and the severity of liver fibrosis. In liver tissue CTHRC1 was co-localized with CK19 and highly expressed in patients with severe liver fibrosis. Further experiments revealed that CTHRC1 promoted cholangiocyte EMT and proliferation. Additionally, CTHRC1 expression levels at HPE could predict the 2-year native liver survival (NLS). CONCLUSIONS CTHRC1 promotes the EMT and proliferation of cholangiocytes and indicate the stage of liver fibrosis. The CTHRC1 expression levels can predict outcomes of BA.
Collapse
Affiliation(s)
- Zequan Ding
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210000, Jiangsu Province, China
| | - Ruyi Zhang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210000, Jiangsu Province, China
| | - Wei Zhu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210000, Jiangsu Province, China
| | - Yao Lu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210000, Jiangsu Province, China
| | - Zhongxian Zhu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210000, Jiangsu Province, China
| | - Hua Xie
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210000, Jiangsu Province, China.
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210000, Jiangsu Province, China.
| |
Collapse
|
2
|
Mavila N, Siraganahalli Eshwaraiah M, Kennedy J. Ductular Reactions in Liver Injury, Regeneration, and Disease Progression-An Overview. Cells 2024; 13:579. [PMID: 38607018 PMCID: PMC11011399 DOI: 10.3390/cells13070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Ductular reaction (DR) is a complex cellular response that occurs in the liver during chronic injuries. DR mainly consists of hyper-proliferative or reactive cholangiocytes and, to a lesser extent, de-differentiated hepatocytes and liver progenitors presenting a close spatial interaction with periportal mesenchyme and immune cells. The underlying pathology of DRs leads to extensive tissue remodeling in chronic liver diseases. DR initiates as a tissue-regeneration mechanism in the liver; however, its close association with progressive fibrosis and inflammation in many chronic liver diseases makes it a more complicated pathological response than a simple regenerative process. An in-depth understanding of the cellular physiology of DRs and their contribution to tissue repair, inflammation, and progressive fibrosis can help scientists develop cell-type specific targeted therapies to manage liver fibrosis and chronic liver diseases effectively.
Collapse
Affiliation(s)
- Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mallikarjuna Siraganahalli Eshwaraiah
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| | - Jaquelene Kennedy
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| |
Collapse
|
3
|
Marakovits C, Francis H. Unraveling the complexities of fibrosis and ductular reaction in liver disease: pathogenesis, mechanisms, and therapeutic insights. Am J Physiol Cell Physiol 2024; 326:C698-C706. [PMID: 38105754 PMCID: PMC11193454 DOI: 10.1152/ajpcell.00486.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Ductular reaction and fibrosis are hallmarks of many liver diseases including primary sclerosing cholangitis, primary biliary cholangitis, biliary atresia, alcoholic liver disease, and metabolic dysfunction-associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis. Liver fibrosis is the accumulation of extracellular matrix often caused by excess collagen deposition by myofibroblasts. Ductular reaction is the proliferation of bile ducts (which are composed of cholangiocytes) during liver injury. Many other cells including hepatic stellate cells, hepatocytes, hepatic progenitor cells, mesenchymal stem cells, and immune cells contribute to ductular reaction and fibrosis by either directly or indirectly interacting with myofibroblasts and cholangiocytes. This review summarizes the recent findings in cellular links between ductular reaction and fibrosis in numerous liver diseases.
Collapse
Affiliation(s)
- Corinn Marakovits
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, United States
| |
Collapse
|
4
|
Nyholm I, Sjöblom N, Pihlajoki M, Hukkinen M, Lohi J, Heikkilä P, Mutka A, Jahnukainen T, Davenport M, Heikinheimo M, Arola J, Pakarinen MP. Deep learning quantification reveals a fundamental prognostic role for ductular reaction in biliary atresia. Hepatol Commun 2023; 7:e0333. [PMID: 38051554 PMCID: PMC10697619 DOI: 10.1097/hc9.0000000000000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND We aimed to quantify ductular reaction (DR) in biliary atresia using a neural network in relation to underlying pathophysiology and prognosis. METHODS Image-processing neural network model was applied to 259 cytokeratin-7-stained native liver biopsies of patients with biliary atresia and 43 controls. The model quantified total proportional DR (DR%) composed of portal biliary epithelium (BE%) and parenchymal intermediate hepatocytes (PIH%). The results were related to clinical data, Sirius Red-quantified liver fibrosis, serum biomarkers, and bile acids. RESULTS In total, 2 biliary atresia biopsies were obtained preoperatively, 116 at Kasai portoenterostomy (KPE) and 141 during post-KPE follow-up. DR% (8.3% vs. 5.9%, p=0.045) and PIH% (1.3% vs. 0.6%, p=0.004) were increased at KPE in patients remaining cholestatic postoperatively. After KPE, patients with subsequent liver transplantation or death showed an increase in DR% (7.9%-9.9%, p = 0.04) and PIH% (1.6%-2.4%, p = 0.009), whereas patients with native liver survival (NLS) showed decreasing BE% (5.5%-3.0%, p = 0.03) and persistently low PIH% (0.9% vs. 1.3%, p = 0.11). In Cox regression, high DR predicted inferior NLS both at KPE [DR% (HR = 1.05, p = 0.01), BE% (HR = 1.05, p = 0.03), and PIH% (HR = 1.13, p = 0.005)] and during follow-up [DR% (HR = 1.08, p<0.0001), BE% (HR = 1.58, p = 0.001), and PIH% (HR = 1.04, p = 0.008)]. DR% correlated with Sirius red-quantified liver fibrosis at KPE (R = 0.47, p<0.0001) and follow-up (R = 0.27, p = 0.004). A close association between DR% and serum bile acids was observed at follow-up (R = 0.61, p<0.001). Liver fibrosis was not prognostic for NLS at KPE (HR = 1.00, p = 0.96) or follow-up (HR = 1.01, p = 0.29). CONCLUSIONS DR predicted NLS in different disease stages before transplantation while associating with serum bile acids after KPE.
Collapse
Affiliation(s)
- Iiris Nyholm
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, Children and Adolescent Department, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Pediatric Research Center, Children and Adolescent Department, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nelli Sjöblom
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjut Pihlajoki
- Pediatric Research Center, Children and Adolescent Department, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Hukkinen
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, Children and Adolescent Department, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Päivi Heikkilä
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aino Mutka
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Jahnukainen
- Department of Pediatric Nephrology and Transplantation, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mark Davenport
- Department of Pediatric Surgery, King’s College Hospital, London, UK
| | - Markku Heikinheimo
- Pediatric Research Center, Children and Adolescent Department, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, Missouri, USA
- Department of Pediatrics, Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Johanna Arola
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko P. Pakarinen
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, Children and Adolescent Department, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Pediatric Research Center, Children and Adolescent Department, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Sok P, Sabo A, Almli LM, Jenkins MM, Nembhard WN, Agopian AJ, Bamshad MJ, Blue EE, Brody LC, Brown AL, Browne ML, Canfield MA, Carmichael SL, Chong JX, Dugan-Perez S, Feldkamp ML, Finnell RH, Gibbs RA, Kay DM, Lei Y, Meng Q, Moore CA, Mullikin JC, Muzny D, Olshan AF, Pangilinan F, Reefhuis J, Romitti PA, Schraw JM, Shaw GM, Werler MM, Harpavat S, Lupo PJ. Exome-wide assessment of isolated biliary atresia: A report from the National Birth Defects Prevention Study using child-parent trios and a case-control design to identify novel rare variants. Am J Med Genet A 2023; 191:1546-1556. [PMID: 36942736 PMCID: PMC10947986 DOI: 10.1002/ajmg.a.63185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
The etiology of biliary atresia (BA) is unknown, but recent studies suggest a role for rare protein-altering variants (PAVs). Exome sequencing data from the National Birth Defects Prevention Study on 54 child-parent trios, one child-mother duo, and 1513 parents of children with other birth defects were analyzed. Most (91%) cases were isolated BA. We performed (1) a trio-based analysis to identify rare de novo, homozygous, and compound heterozygous PAVs and (2) a case-control analysis using a sequence kernel-based association test to identify genes enriched with rare PAVs. While we replicated previous findings on PKD1L1, our results do not suggest that recurrent de novo PAVs play important roles in BA susceptibility. In fact, our finding in NOTCH2, a disease gene associated with Alagille syndrome, highlights the difficulty in BA diagnosis. Notably, IFRD2 has been implicated in other gastrointestinal conditions and warrants additional study. Overall, our findings strengthen the hypothesis that the etiology of BA is complex.
Collapse
Affiliation(s)
- Pagna Sok
- Pediatrics, Baylor College of Medicine, Houston, Texas,
USA
| | - Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine,
Houston, Texas, USA
| | - Lynn M. Almli
- National Center on Birth Defects and Developmental
Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia,
USA
| | - Mary M. Jenkins
- National Center on Birth Defects and Developmental
Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia,
USA
| | - Wendy N. Nembhard
- Fay W. Boozman College of Public Health, University of
Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - A. J. Agopian
- Department of Epidemiology, Human Genetics, and
Environmental Sciences, University of Texas School of Public Health, Houston, Texas,
USA
| | - Michael J. Bamshad
- Division of Genetic Medicine, Department of Pediatrics,
University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle,
Washington, USA
| | - Elizabeth E. Blue
- Brotman Baty Institute for Precision Medicine, Seattle,
Washington, USA
- Division of Medical Genetics, Department of Medicine,
University of Washington, Seattle, Washington, USA
| | - Lawrence C. Brody
- Genetics and Environment Interaction Section, National
Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland,
USA
| | | | - Marilyn L. Browne
- Birth Defects Registry, New York State Department of
Health, Albany, New York, USA
- Department of Epidemiology and Biostatistics, School of
Public Health, University at Albany, Rensselaer, New York, USA
| | - Mark A. Canfield
- Birth Defects Epidemiology and Surveillance Branch, Texas
Department of State Health Services, Austin, Texas, USA
| | - Suzan L. Carmichael
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, California, USA
| | - Jessica X. Chong
- Division of Genetic Medicine, Department of Pediatrics,
University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle,
Washington, USA
| | - Shannon Dugan-Perez
- Human Genome Sequencing Center, Baylor College of Medicine,
Houston, Texas, USA
| | - Marcia L. Feldkamp
- Division of Medical Genetics, Department of Pediatrics,
University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Richard H. Finnell
- Department of Medicine, Center for Precision
Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine,
Houston, Texas, USA
| | - Denise M. Kay
- Division of Genetics, Wadsworth Center, New York State
Department of Health, Albany, New York, USA
| | - Yunping Lei
- Department of Medicine, Center for Precision
Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Qingchang Meng
- Human Genome Sequencing Center, Baylor College of Medicine,
Houston, Texas, USA
| | - Cynthia A. Moore
- National Center on Birth Defects and Developmental
Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia,
USA
| | - James C. Mullikin
- Genetics and Environment Interaction Section, National
Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland,
USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine,
Houston, Texas, USA
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global
Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Faith Pangilinan
- Genetics and Environment Interaction Section, National
Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland,
USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental
Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia,
USA
| | - Paul A. Romitti
- Department of Epidemiology, University of Iowa College of
Public Health, Iowa City, Iowa, USA
| | | | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, California, USA
| | - Martha M. Werler
- Department of Epidemiology, Boston University, Boston,
Massachusetts, USA
| | - Sanjiv Harpavat
- Pediatrics, Baylor College of Medicine, Houston, Texas,
USA
- Gastroenterology, Hepatology and Nutrition, Texas
Children’s Hospital, Houston, Texas, USA
| | - Philip J. Lupo
- Pediatrics, Baylor College of Medicine, Houston, Texas,
USA
| | | |
Collapse
|
6
|
Biliary Atresia: A Complex Hepatobiliary Disease with Variable Gene Involvement, Diagnostic Procedures, and Prognosis. Diagnostics (Basel) 2022; 12:diagnostics12020330. [PMID: 35204421 PMCID: PMC8870870 DOI: 10.3390/diagnostics12020330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The diagnosis of biliary atresia is still terrifying at the 3rd decade of the 21st century. In a department of neonatal intensive care unit, parents and physicians face a challenge with a jaundiced baby, who may or may not have a surgically correctable hepatopathy. The approach has been systematically evaluated, but the etiology remains ambiguous. The study of families with recurrent biliary atresia has been undertaken at a molecular level. The primary interest with this disease is to identify the etiology and change the treatment from symptomatic to curative. The occurrence of this obstructive cholangio-hepatopathy in well-known genetic syndromes has suggested just coincidental finding, but the reality can be more intriguing because some of these diseases may have some interaction with the development of the intrahepatic biliary system. Several genes have been investigated thoroughly, including ADD3 and GPC1 shifting the interest from viruses to genetics. In this review, the intriguing complexities of this hepatobiliary disease are highlighted.
Collapse
|
7
|
Siyu P, Junxiang W, Qi W, Yimao Z, Shuguang J. The Role of GLI in the Regulation of Hepatic Epithelial-Mesenchymal Transition in Biliary Atresia. Front Pediatr 2022; 10:861826. [PMID: 35692978 PMCID: PMC9178093 DOI: 10.3389/fped.2022.861826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To study the regulatory role of GLI1/GLI2, a nuclear transcription factor of the Sonic hedgehog (Shh) signaling pathway, in epithelial-mesenchymal transition (EMT) related to hepatic fibrosis in patients with biliary atresia (BA). METHODS The messenger RNA (mRNA) and protein expression levels of GLI1/GLI2, Snail/Slug, and other Shh- and EMT-related cytokines were tested in the liver tissues of BA patients and animals. Then, GLI1/GLI2 was silenced and overexpressed in mouse intrahepatic bile duct epithelial cells (mIBECs) and BA animals to investigate changes in the mRNA and protein expression of EMT key factors and liver fibrosis indicators. After silencing and overexpression of GLI1/GLI2, immunofluorescence was used to detect the expression of cytokeratin-19 (CK19) and α-smooth muscle actin (α-SMA) in mIBECs, and hematoxylin and eosin (HE) staining and Masson staining were used to observe the degree of liver fibrosis in the BA animals. RESULTS Compared with the control, the mRNA and protein expression levels of GLI2, Snail, vimentin, and α-SMA were significantly increased and those of E-cadherin were significantly decreased in liver tissue from BA patients and animals. Overexpression of GLI2 increased the mRNA and protein expression levels of Snail, vimentin, and α-SMA and that of E-cadherin was significantly decreased in mIBECs and BA animals. After GLI2 silencing, the opposite pattern was observed. Immunofluorescence detection showed enhanced expression of the bile duct epithelial cell marker CK19 in mIBECs after GLI2 silencing and enhanced expression of the mesenchymal cell marker α-SMA after GLI2 overexpression. HE and Masson staining suggested that the GLI2-overexpressing group had a significantly higher degree of fibrosis. CONCLUSION The Shh signaling pathway plays an important role in fibrogenesis in BA. GLI2 can significantly regulate EMT in mIBECs and livers of BA mice.
Collapse
Affiliation(s)
- Pu Siyu
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Wang Junxiang
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Wang Qi
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhang Yimao
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Shuguang
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Brovold M, Keller D, Devarasetty M, Dominijanni A, Shirwaiker R, Soker S. Biofabricated 3D in vitro model of fibrosis-induced abnormal hepatoblast/biliary progenitors' expansion of the developing liver. Bioeng Transl Med 2021; 6:e10207. [PMID: 34589593 PMCID: PMC8459590 DOI: 10.1002/btm2.10207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 11/19/2022] Open
Abstract
Congenital disorders of the biliary tract are the primary reason for pediatric liver failure and ultimately for pediatric liver transplant needs. Not all causes of these disorders are well understood, but it is known that liver fibrosis occurs in many of those afflicted. The goal of this study is to develop a simple yet robust model that recapitulates physico-mechanical and cellular aspects of fibrosis mediated via hepatic stellate cells (HSCs) and their effects on biliary progenitor cells. Liver organoids were fabricated by embedding various HSCs, with distinctive abilities to generate mild to severe fibrotic environments, together with undifferentiated liver progenitor cell line, HepaRG, within a collagen I hydrogel. The fibrotic state of each organoid was characterized by examination of extracellular matrix (ECM) remodeling through quantitative image analysis, rheometry, and qPCR. In tandem, the phenotype of the liver progenitor cell and cluster formation was assessed through histology. Activated HSCs (aHSCs) created a more severe fibrotic state, exemplified by a more highly contracted and rigid ECM, as well higher relative expression of TGF-β, TIMP-1, LOXL2, and COL1A2 as compared to immortalized HSCs (LX-2). Within the more severe fibrotic environment, generated by the aHSCs, higher Notch signaling was associated with an expansion of CK19+ cells as well as the formation of larger, more densely populated cell biliary like-clusters as compared to mild and non-fibrotic controls. The expansion of CK19+ cells, coupled with a severely fibrotic environment, are phenomena found within patients suffering from a variety of congenital liver disorders of the biliary tract. Thus, the model presented here can be utilized as a novel in vitro testing platform to test drugs and identify new targets that could benefit pediatric patients that suffer from the biliary dysgenesis associated with a multitude of congenital liver diseases.
Collapse
Affiliation(s)
- Matthew Brovold
- Wake Forest Institute for Regenerative MedicineWake Forest Baptist Medical Center, Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
| | - Dale Keller
- Wake Forest Institute for Regenerative MedicineWake Forest Baptist Medical Center, Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
| | - Mahesh Devarasetty
- Wake Forest Institute for Regenerative MedicineWake Forest Baptist Medical Center, Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
| | - Anthony Dominijanni
- Wake Forest Institute for Regenerative MedicineWake Forest Baptist Medical Center, Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
| | - Rohan Shirwaiker
- Department of Industrial and Systems EngineeringNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Shay Soker
- Wake Forest Institute for Regenerative MedicineWake Forest Baptist Medical Center, Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
9
|
Dong Y, Li A, Zhu S, Chen W, Li M, Zhao P. Biopsy-proven liver cirrhosis in young children: A 10-year cohort study. J Viral Hepat 2021; 28:959-963. [PMID: 33763932 DOI: 10.1111/jvh.13501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/03/2023]
Abstract
Young children with liver cirrhosis have a significantly high risk of mortality. However, there are few studies regarding early childhood-onset cirrhosis. This study aims to explore the causes, clinical findings and prognosis of biopsy-proven cirrhosis in infants, toddlers and preschoolers. We enroled young children with biopsy-proven cirrhosis from January 2010. Till January 2020, the study has been going on for 10 years. A total of 139 cirrhotic children were enrolled, including 87 boys and 52 girls. The median age at initially histological diagnosis of cirrhosis was 2 years old (range: 1 month-6 years). Sixty-two patients reported yellowish discoloration of sclera and/or skin as an initial symptom. Ninety-three patients had definite aetiologies while 46 had indeterminate causes. Among the confirmed cases, 31 had hepatitis B virus (HBV) infection, accounting for 33.3%. Subsequently, glycogen storage disease was diagnosed in 16 cases and Wilson disease in 14 cases. In these patients with HBV infection, nine finally achieved hepatitis B surface antigen (HBsAg) loss (29.0%) after effective antiviral therapy during the follow-up. Logistic regression revealed that baseline alanine aminotransferase (odds ratio 1.008, p = 0.028) was the independent predictor of HBsAg loss. Furthermore, one patient who underwent second biopsies showed histological reverse. HBV infection is an important cause of paediatric cirrhosis in our study. The pathogenesis of HBV-related cirrhosis in early childhood deserves further studies.
Collapse
Affiliation(s)
- Yi Dong
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Aiqin Li
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Shishu Zhu
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Weibin Chen
- Beijing Yunsheng Science & Technology Co., Ltd.,, Beijing, China
| | - Meina Li
- Department of Health Service, Second Military Medical University, Shanghai, China
| | - Pan Zhao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Nomden M, Beljaars L, Verkade HJ, Hulscher JBF, Olinga P. Current Concepts of Biliary Atresia and Matrix Metalloproteinase-7: A Review of Literature. Front Med (Lausanne) 2020; 7:617261. [PMID: 33409288 PMCID: PMC7779410 DOI: 10.3389/fmed.2020.617261] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Biliary atresia (BA) is a rare cholangiopathy of infancy in which the bile ducts obliterate, leading to profound cholestasis and liver fibrosis. BA is hypothesized to be caused by a viral insult that leads to over-activation of the immune system. Patients with BA are surgically treated with a Kasai portoenterostomy (KPE), which aims to restore bile flow from the liver to the intestines. After KPE, progressive liver fibrosis is often observed in BA patients, even despite surgical success and clearance of their jaundice. The innate immune response is involved during the initial damage to the cholangiocytes and further differentiation of the adaptive immune response into a T-helper 1 cell (Th1) response. Multiple studies have shown that there is continuing elevation of involved cytokines that can lead to the progressive liver fibrosis. However, the mechanism by which the progressive injury occurs is not fully elucidated. Recently, matrix metalloproteinase-7 (MMP-7) has been investigated to be used as a biomarker to diagnose BA. MMPs are involved in extracellular matrix (ECM) turnover, but also have non-ECM related functions. The role of MMP-7 and other MMPs in liver fibrosis is just starting to be elucidated. Multiple studies have shown that serum MMP-7 measurements are able to accurately diagnose BA in a cohort of cholestatic patients while hepatic MMP-7 expression correlated with BA-related liver fibrosis. While the mechanism by which MMP-7 can be involved in the pathophysiology of BA is unclear, MMP-7 has been investigated in other fibrotic pathologies such as renal and idiopathic pulmonary fibrosis. MMP-7 is involved in Wnt/β-catenin signaling, reducing cell-to-cell contact by shedding of E-cadherin, amplifying inflammation and fibrosis via osteopontin (OPN) and TNF-α while it also appears to play a role in induction of angiogenesis This review aims to describe the current understandings of the pathophysiology of BA. Subsequently, we describe how MMP-7 is involved in other pathologies, such as renal and pulmonary fibrosis. Then, we propose how MMP-7 can potentially be involved in BA. By doing this, we aim to describe the putative role of MMP-7 as a prognostic biomarker in BA and to provide possible new therapeutic and research targets that can be investigated in the future.
Collapse
Affiliation(s)
- Mark Nomden
- Divison of Pediatric Surgery, Department of Surgery, University of Groningen, Groningen, Netherlands
| | - Leonie Beljaars
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Henkjan J Verkade
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan B F Hulscher
- Divison of Pediatric Surgery, Department of Surgery, University of Groningen, Groningen, Netherlands
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Masui D, Fukahori S, Mizuochi T, Watanabe Y, Fukui K, Ishii S, Saikusa N, Hashizume N, Higashidate N, Sakamoto S, Takato A, Yoshiura KI, Tanaka Y, Yagi M. Cystic biliary atresia with paucity of bile ducts and gene mutation in KDM6A: a case report. Surg Case Rep 2019; 5:132. [PMID: 31414320 PMCID: PMC6694366 DOI: 10.1186/s40792-019-0688-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/02/2019] [Indexed: 12/28/2022] Open
Abstract
Background Biliary atresia (BA) cases are generally not associated with congenital abnormalities. However, accurate diagnosis of BA is often challenging because the histopathological features of BA overlap with those of other pediatric liver diseases and rarely overlap with those of other genetic disorders. We experienced a rare case of BA with the histopathological finding of bile duct paucity, a gene mutation in KDM6A, and KS-like phenotypes. Case presentation A male baby was diagnosed with biliary atresia by intraoperative cholangiography at 4 days of age, and histological examination following a liver biopsy revealed a paucity of bile ducts and several typical clinical findings of Alagille syndrome. However, Alagille syndrome was ruled out after neither JAG1 nor NOTCH2 gene mutations were identified. Whole-exome sequencing on DNA from his parents was additionally performed to examine other possible syndromic disorders, and a mutation was identified in KDM6A. However, Kabuki syndrome was not diagnosed as a result. The histological finding of interlobular bile duct paucity and the genetic mutation in KDM6A, as well as several clinical findings consistent with Alagille syndrome or Kabuki syndrome, made it difficult to confirm the diagnosis of BA. Conclusions Based on the interesting findings of the present case, we hypothesized that KDM6A is associated with hepatic malformations via a connection with the Notch signaling pathway.
Collapse
Affiliation(s)
- Daisuke Masui
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | - Suguru Fukahori
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Tatsuki Mizuochi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Yoriko Watanabe
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan.,Research Institute of Medical Mass Spectrometry, Kurume University School of Medicine, Kurume, Japan
| | - Kaori Fukui
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Shinji Ishii
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Nobuyuki Saikusa
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Naoki Hashizume
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Naruki Higashidate
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Saki Sakamoto
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Aiko Takato
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshiaki Tanaka
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.,Division of Medical Safety Management, Kurume University School of Medicine, Kurume, Japan
| | - Minoru Yagi
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| |
Collapse
|
12
|
YAP Activation Drives Liver Regeneration after Cholestatic Damage Induced by Rbpj Deletion. Int J Mol Sci 2018; 19:ijms19123801. [PMID: 30501048 PMCID: PMC6321044 DOI: 10.3390/ijms19123801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Liver cholestasis is a chronic liver disease and a major health problem worldwide. Cholestasis is characterised by a decrease in bile flow due to impaired secretion by hepatocytes or by obstruction of bile flow through intra- or extrahepatic bile ducts. Thereby cholestasis can induce ductal proliferation, hepatocyte injury and liver fibrosis. Notch signalling promotes the formation and maturation of bile duct structures. Here we investigated the liver regeneration process in the context of cholestasis induced by disruption of the Notch signalling pathway. Liver-specific deletion of recombination signal binding protein for immunoglobulin kappa j region (Rbpj), which represents a key regulator of Notch signalling, induces severe cholestasis through impaired intra-hepatic bile duct (IHBD) maturation, severe necrosis and increased lethality. Deregulation of the biliary compartment and cholestasis are associated with the change of several signalling pathways including a Kyoto Encyclopedia of Genes and Genomes (KEGG) gene set representing the Hippo pathway, further yes-associated protein (YAP) activation and upregulation of SRY (sex determining region Y)-box 9 (SOX9), which is associated with transdifferentiation of hepatocytes. SOX9 upregulation in cholestatic liver injury in vitro is independent of Notch signalling. We could comprehensively address that in vivo Rbpj depletion is followed by YAP activation, which influences the transdifferentiation of hepatocytes and thereby contributing to liver regeneration.
Collapse
|