1
|
Whalen C, Verma A, Kurashima K, Carter J, Nazzal H, Jain A. Novel Models for Assessing and Pathophysiology of Hepatic Ischemia-Reperfusion Injury Mechanisms. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1507. [PMID: 39336548 PMCID: PMC11434406 DOI: 10.3390/medicina60091507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a major cause of postoperative hepatic dysfunction and liver failure involving cellular damage to previously ischemic tissues to which blood flow is restored. The reestablishment of blood flow is essential for salvaging ischemic tissues. The reperfusion itself, however, can paradoxically lead to further cellular damage, which involves a multi-factorial process resulting in extensive tissue damage, which can threaten the function and viability of the liver and other organ systems. The following review outlines multiple models for in-lab analysis of the various hepatic IRI mechanisms, including murine, porcine, cell lines, and machine perfusion models.
Collapse
Affiliation(s)
- Connor Whalen
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Arun Verma
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Kento Kurashima
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Jasmine Carter
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Hala Nazzal
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ajay Jain
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
2
|
Steinhauser C, Yakac AE, Markgraf W, Kromnik S, Döcke A, Talhofer P, Thiele C, Malberg H, Füssel S, Thomas C, Putz J. Assessment of hemodynamic and blood parameters that may reflect macroscopic quality of porcine kidneys during normothermic machine perfusion using whole blood. World J Urol 2024; 42:471. [PMID: 39110171 PMCID: PMC11306647 DOI: 10.1007/s00345-024-05139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
PURPOSE Using ex vivo normothermic machine perfusion (NMP) with whole blood we assessed marginal porcine kidneys under reperfusion. The aim was to link measureable machine and clinical blood parameters with the currently used visual assessment. This could serve as a baseline for a standardized evaluation score to identify potentially transplantable kidneys in the future. METHODS Kidneys and autologous whole blood were procured from slaughterhouse pigs (n = 33) and were perfused for 4 h using NMP. The hemodynamic parameters arterial pressure (AP), renal blood flow (RBF) and intrarenal resistance (IRR) were measured. Activity of aspartate transaminase (AST), gamma-glutamyltransferase (GGT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and lactate were assessed in blood at 0/1/2/4 h. Kidneys were grouped into "potentially transplantable" (PT) or "not transplantable" (NT) based on their overall macroscopic appearance after NMP by an experienced physician. RESULTS PT-kidneys (n = 20) had a significantly lower IRR and higher RBF than NT-kidneys (n = 13). GGT, ALP and LDH did not differ significantly, but at 4 h, AST was significantly higher in PT-kidneys compared to NT-kidneys. Lactate levels kept increasing during NMP in NT-kidneys and were significantly higher at 1/2/4 h than in PT-kidneys. CONCLUSION The immediately assessed macroscopic aspects of examined kidneys correlated with hemodynamic parameters, increased lactate and lower AST in this study. In the future, NMP with whole blood could be a useful tool to extend the donor pool by allowing the assessment of otherwise unknown characteristics of marginal kidneys before transplantation.
Collapse
Affiliation(s)
- Carla Steinhauser
- Department of Urology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Abdulbaki Emre Yakac
- Department of Urology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Wenke Markgraf
- Institute of Biomedical Engineering, Technische Universität Dresden, Fetscherstraße 29, 01307, Dresden, Germany
| | - Susanne Kromnik
- Institute of Biomedical Engineering, Technische Universität Dresden, Fetscherstraße 29, 01307, Dresden, Germany
| | - Andreas Döcke
- Institute of Biomedical Engineering, Technische Universität Dresden, Fetscherstraße 29, 01307, Dresden, Germany
| | - Philipp Talhofer
- Institute of Biomedical Engineering, Technische Universität Dresden, Fetscherstraße 29, 01307, Dresden, Germany
| | - Christine Thiele
- Institute of Biomedical Engineering, Technische Universität Dresden, Fetscherstraße 29, 01307, Dresden, Germany
| | - Hagen Malberg
- Institute of Biomedical Engineering, Technische Universität Dresden, Fetscherstraße 29, 01307, Dresden, Germany
| | - Susanne Füssel
- Department of Urology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Juliane Putz
- Department of Urology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
3
|
Unes M, Kurashima K, Caliskan Y, Portz E, Jain A, Nazzal M. Normothermic ex vivo perfusion of deceased donor kidneys and its clinical potential in kidney transplantation outcomes. Int J Artif Organs 2023; 46:618-628. [PMID: 37897367 DOI: 10.1177/03913988231207719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
In recent years, normothermic machine perfusion (NMP) has emerged in conversation surrounding organ preservation and transplantation techniques with the goal of improving patient and clinical outcomes. This is in great attempt to address the rate of non-utilization and the shortage of available organs in kidney transplantation. This focus in mind, normothermic perfusion presents itself as a potential tool to mimic physiological conditions and improve current preservation methods, such as static cold storage. This review serves to improve understanding of the observed connection between the consequences of ischemia and reperfusion injury and traditional preservation techniques as well as how renal NMP may mitigate these issues. Previous studies suggest that reducing time in static cold storage methods by promoting the normothermic perfusion model results in decreased delayed graft function and post-transplant complications. This review also aims to present the immense clinical potential NMP has on future kidney transplantation success and what this means for the fields of nephrology and transplantation. While great strides have been made to evaluate normothermic perfusion's impact on kidney graft viability and transplant success, future research into unified protocol, clinically relevant biomarkers, cost-utility analysis, and use with associated therapeutic and imaging modalities is paramount.
Collapse
Affiliation(s)
| | - Kento Kurashima
- Department of Pediatrics, SSM Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Yasar Caliskan
- Division of Nephrology, SSM Saint Louis University Hospital, Saint Louis, MO, USA
| | | | - Ajay Jain
- Department of Pediatrics, SSM Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Mustafa Nazzal
- Department of Surgery, SSM Saint Louis University Hospital, Saint Louis, MO, USA
| |
Collapse
|
4
|
Warner RM, Yang J, Drake A, Lee Y, Nemanic S, Scott D, Higgins AZ. Osmotic response during kidney perfusion with cryoprotectant in isotonic or hypotonic vehicle solution. PeerJ 2023; 11:e16323. [PMID: 38025736 PMCID: PMC10668850 DOI: 10.7717/peerj.16323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Organ cryopreservation would revolutionize transplantation by overcoming the shelf-life limitations of conventional organ storage. To prepare an organ for cryopreservation, it is first perfused with cryoprotectants (CPAs). These chemicals can enable vitrification during cooling, preventing ice damage. However, CPAs can also cause toxicity and osmotic damage. It is a major challenge to find the optimal balance between protecting the cells from ice and avoiding CPA-induced damage. In this study, we examined the organ perfusion process to shed light on phenomena relevant to cryopreservation protocol design, including changes in organ size and vascular resistance. In particular, we compared perfusion of kidneys (porcine and human) with CPA in either hypotonic or isotonic vehicle solution. Our results demonstrate that CPA perfusion causes kidney mass changes consistent with the shrink-swell response observed in cells. This response was observed when the kidneys were relatively fresh, but disappeared after prolonged warm and/or cold ischemia. Perfusion with CPA in a hypotonic vehicle solution led to a significant increase in vascular resistance, suggesting reduced capillary diameter due to cell swelling. This could be reversed by switching to perfusion with CPA in isotonic vehicle solution. Hypotonic vehicle solution did not cause notable osmotic damage, as evidenced by low levels of lactate dehydrogenase (LDH) in the effluent, and it did not have a statistically significant effect on the delivery of CPA into the kidney, as assessed by computed tomography (CT). Overall, our results show that CPA vehicle solution tonicity affects organ size and vascular resistance, which may have important implications for cryopreservation protocol design.
Collapse
Affiliation(s)
- Ross M. Warner
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States
| | - Jun Yang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States
| | - Andrew Drake
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States
| | - Youngjoo Lee
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States
| | - Sarah Nemanic
- Veterinary Radiology Consulting LLC, Lebanon, Oregon, United States
| | - David Scott
- Department of Abdominal Transplantation, Oregon Health & Science University, Portland, Oregon, United States
| | - Adam Z. Higgins
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States
| |
Collapse
|
5
|
Preoperative Function Assessment of Ex Vivo Kidneys with Supervised Machine Learning Based on Blood and Urine Markers Measured during Normothermic Machine Perfusion. Biomedicines 2022; 10:biomedicines10123055. [PMID: 36551812 PMCID: PMC9776285 DOI: 10.3390/biomedicines10123055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Establishing an objective quality assessment of an organ prior to transplantation can help prevent unnecessary discard of the organ and reduce the probability of functional failure. In this regard, normothermic machine perfusion (NMP) offers new possibilities for organ evaluation. However, to date, few studies have addressed the identification of markers and analytical tools to determine graft quality. In this study, function and injury markers were measured in blood and urine during NMP of 26 porcine kidneys and correlated with ex vivo inulin clearance behavior. Significant differentiation of kidneys according to their function could be achieved by oxygen consumption, oxygen delivery, renal blood flow, arterial pressure, intrarenal resistance, kidney temperature, relative urea concentration, and urine production. In addition, classifications were accomplished with supervised learning methods and histological analysis to predict renal function ex vivo. Classificators (support vector machines, k-nearest-neighbor, logistic regression and naive bayes) based on relevant markers in urine and blood achieved 75% and 83% accuracy in the validation and test set, respectively. A correlation between histological damage and function could not be detected. The measurement of blood and urine markers provides information of preoperative renal quality, which can used in future to establish an objective quality assessment.
Collapse
|
6
|
Normothermic Machine Perfusion in Renal Transplantation. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Purpose of Review
Normothermic machine perfusion (NMP) is a promising new tool in kidney transplantation to improve the outcome of marginal donor kidney transplantation. This review examines the current evidence for NMP in clinical practice and considers how the technology may be used in the future.
Recent Findings and Summary
There is emerging evidence to suggest that NMP has the potential to expand the donor pool of transplantable organs. The safety and feasibility of NMP have been established in a number of clinical studies but more research is needed to optimise the perfusion conditions. NMP shows promise as a viability assessment tool with particular focus on biomarkers and imaging techniques which provide real-time information to facilitate transplantation decision-making. Moreover, the exciting development of new potential therapeutics such as cell and gene-based therapies which are deliverable during NMP may also improve and recondition grafts prior to implantation.
Collapse
|
7
|
Exploring Porcine Precision-Cut Kidney Slices as a Model for Transplant-Related Ischemia-Reperfusion Injury. TRANSPLANTOLOGY 2022. [DOI: 10.3390/transplantology3020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Marginal donor kidneys are more likely to develop ischemia-reperfusion injury (IRI), resulting in inferior long-term outcomes. Perfusion techniques are used to attenuate IRI and improve graft quality. However, machine perfusion is still in its infancy, and more research is required for optimal conditions and potential repairing therapies. Experimental machine perfusion using porcine kidneys is a great way to investigate transplant-related IRI, but these experiments are costly and time-consuming. Therefore, an intermediate model to study IRI would be of great value. We developed a precision-cut kidney slice (PCKS) model that resembles ischemia-reperfusion and provides opportunities for studying multiple interventions simultaneously. Porcine kidneys were procured from a local slaughterhouse, exposed to 30 min of warm ischemia, and cold preserved. Subsequently, PCKS were prepared and incubated under various conditions. Adenosine triphosphate (ATP) levels and histological tissue integrity were assessed for renal viability and injury. Slicing did not influence tissue viability, and PCKS remained viable up to 72 h incubation with significantly increased ATP levels. Hypothermic and normothermic incubation led to significantly higher ATP levels than baseline. William’s medium E supplemented with Ciprofloxacin (and Amphotericin-B) provided the most beneficial condition for incubation of porcine PCKS. The porcine PCKS model can be used for studying transplant IRI.
Collapse
|
8
|
Hamelink TL, Ogurlu B, De Beule J, Lantinga VA, Pool MBF, Venema LH, Leuvenink HGD, Jochmans I, Moers C. Renal Normothermic Machine Perfusion: The Road Toward Clinical Implementation of a Promising Pretransplant Organ Assessment Tool. Transplantation 2022; 106:268-279. [PMID: 33979315 DOI: 10.1097/tp.0000000000003817] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The increased utilization of high-risk renal grafts for transplantation requires optimization of pretransplant organ assessment strategies. Current decision-making methods to accept an organ for transplantation lack overall predictive power and always contain an element of subjectivity. Normothermic machine perfusion (NMP) creates near-physiological conditions, which might facilitate a more objective assessment of organ quality before transplantation. NMP is rapidly gaining popularity, with various transplant centers developing their own NMP protocols and renal viability criteria. However, to date, no validated sets of on-pump viability markers exist nor are there unified NMP protocols. This review provides a critical overview of the fundamentals of current renal NMP protocols and proposes a framework to approach further development of ex vivo organ evaluation. We also comment on the potential logistical implications of routine clinical use of NMP, which is a more complex procedure compared with static cold storage or even hypothermic machine perfusion.
Collapse
Affiliation(s)
- Tim L Hamelink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Baran Ogurlu
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Julie De Beule
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Veerle A Lantinga
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonie H Venema
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
9
|
Zulpaite R, Miknevicius P, Leber B, Strupas K, Stiegler P, Schemmer P. Ex-vivo Kidney Machine Perfusion: Therapeutic Potential. Front Med (Lausanne) 2022; 8:808719. [PMID: 35004787 PMCID: PMC8741203 DOI: 10.3389/fmed.2021.808719] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 01/11/2023] Open
Abstract
Kidney transplantation remains the gold standard treatment for patients suffering from end-stage kidney disease. To meet the constantly growing organ demands grafts donated after circulatory death (DCD) or retrieved from extended criteria donors (ECD) are increasingly utilized. Not surprisingly, usage of those organs is challenging due to their susceptibility to ischemia-reperfusion injury, high immunogenicity, and demanding immune regulation after implantation. Lately, a lot of effort has been put into improvement of kidney preservation strategies. After demonstrating a definite advantage over static cold storage in reduction of delayed graft function rates in randomized-controlled clinical trials, hypothermic machine perfusion has already found its place in clinical practice of kidney transplantation. Nevertheless, an active investigation of perfusion variables, such as temperature (normothermic or subnormothermic), oxygen supply and perfusate composition, is already bringing evidence that ex-vivo machine perfusion has a potential not only to maintain kidney viability, but also serve as a platform for organ conditioning, targeted treatment and even improve its quality. Many different therapies, including pharmacological agents, gene therapy, mesenchymal stromal cells, or nanoparticles (NPs), have been successfully delivered directly to the kidney during ex-vivo machine perfusion in experimental models, making a big step toward achievement of two main goals in transplant surgery: minimization of graft ischemia-reperfusion injury and reduction of immunogenicity (or even reaching tolerance). In this comprehensive review current state of evidence regarding ex-vivo kidney machine perfusion and its capacity in kidney graft treatment is presented. Moreover, challenges in application of these novel techniques in clinical practice are discussed.
Collapse
Affiliation(s)
- Ruta Zulpaite
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Povilas Miknevicius
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | | | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Peter Schemmer
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
10
|
van Leeuwen LL, Leuvenink HGD, Olinga P, Ruigrok MJR. Shifting Paradigms for Suppressing Fibrosis in Kidney Transplants: Supplementing Perfusion Solutions With Anti-fibrotic Drugs. Front Med (Lausanne) 2022; 8:806774. [PMID: 35083254 PMCID: PMC8784659 DOI: 10.3389/fmed.2021.806774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Great efforts have been made toward addressing the demand for donor kidneys. One of the most promising approaches is to use kidneys from donation after circulatory death donors. These kidneys, however, suffer from more severe ischemia and reperfusion injury than those obtained via donation after brain death and are thus more prone to develop interstitial fibrosis and tubular atrophy. Even though machine perfusion is increasingly used to reduce ischemia and reperfusion injury, there are no effective treatments available to ameliorate interstitial fibrosis and tubular atrophy, forcing patients to resume dialysis, undergo re-transplantation, or suffer from premature death. Safe and effective anti-fibrotic therapies are therefore greatly desired. We propose a new therapeutic approach in which machine perfusion solutions are supplemented with anti-fibrotic compounds. This allows the use of higher concentrations than those used in humans whilst eliminating side effects in other organs. To the authors' knowledge, no one has reviewed whether such an approach could reduce interstitial fibrosis and tubular atrophy; we therefore set out to explore its merit. In this review, we first provide background information on ischemia and reperfusion injury as well as interstitial fibrosis and tubular atrophy, after which we describe currently available approaches for preserving donor kidneys. We then present an evaluation of selected compounds. To identify promising compounds, we analyzed publications describing the effects of anti-fibrotic molecules in precision-cut kidneys slices, which are viable explants that can be cultured ex vivo for up to a few days whilst retaining functional and structural features. LY2109761, galunisertib, imatinib, nintedanib, and butaprost were shown to exert anti-fibrotic effects in slices within a relatively short timeframe (<48 h) and are therefore considered to be excellent candidates for follow-up ex vivo machine perfusion studies.
Collapse
Affiliation(s)
- L. Leonie van Leeuwen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Mitchel J. R. Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Prolonged Normothermic Ex Vivo Kidney Perfusion Is Superior to Cold Nonoxygenated and Oxygenated Machine Perfusion for the Preservation of DCD Porcine Kidney Grafts. Transplant Direct 2021; 7:e751. [PMID: 34514106 PMCID: PMC8425822 DOI: 10.1097/txd.0000000000001218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/27/2022] Open
Abstract
The increased usage of marginal grafts has triggered interest in perfused kidney preservation to minimize graft injury. We used a donation after circulatory death (DCD) porcine kidney autotransplantation model to compare 3 of the most frequently used ex vivo kidney perfusion techniques: nonoxygenated hypothermic machine perfusion (non-oxHMP), oxygenated hypothermic machine perfusion (oxHMP), and normothermic ex vivo kidney perfusion (NEVKP). Methods Following 30 min of warm ischemia, grafts were retrieved and preserved with either 16 h of non-oxHMP, oxHMP, or NEVKP (n = 5 per group). After contralateral nephrectomy, grafts were autotransplanted and animals were followed for 8 d. Kidney function and injury markers were compared between groups. Results NEVKP demonstrated a significant reduction in preservation injury compared with either cold preservation method. Grafts preserved by NEVKP showed superior function with lower peak serum creatinine (NEVKP versus non-oxHMP versus oxHMP: 3.66 ± 1.33 mg/dL, 8.82 ± 3.17 mg/dL, and 9.02 ± 5.5 mg/dL) and more rapid recovery. The NEVKP group demonstrated significantly increased creatinine clearance on postoperative day 3 compared with the cold perfused groups. Tubular injury scores on postoperative day 8 were similar in all groups. Conclusions Addition of oxygen during HMP did not reduce preservation injury of DCD kidney grafts. Grafts preserved with prolonged NEVKP demonstrated superior initial graft function compared with grafts preserved with non-oxHMP or oxHMP in a model of pig DCD kidney transplantation.
Collapse
|
12
|
Vallant N, Wolfhagen N, Sandhu B, Hamaoui K, Cook T, Pusey C, Papalois V. A Comparison of Pulsatile Hypothermic and Normothermic Ex Vivo Machine Perfusion in a Porcine Kidney Model. Transplantation 2021; 105:1760-1770. [PMID: 33560723 DOI: 10.1097/tp.0000000000003599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Hypothermic machine perfusion (HMP) is a well-established method for deceased donor kidney preservation. Normothermic machine perfusion (NMP) might offer similar or greater advantages. We compared the 2 methods in an ex vivo perfusion model using 34 porcine kidneys. METHODS Thirty kidneys were stored on ice for 24 h before undergoing 4 h of HMP (n = 15) or NMP (n = 15) followed by 2 h of normothermic ex vivo reperfusion with whole blood. Four kidneys underwent 28 h of cold static storage followed by 2 h of normothermic ex vivo reperfusion. During the 2 h of normothermic ex vivo reperfusion, perfusate flow rates, urinary output, and oxygen consumption rates were compared between all groups. RESULTS Porcine kidneys after HMP showed significantly higher urinary output (5.31 ± 2.06 versus 2.44 ± 1.19 mL/min; P = 0.002), oxygen consumption (22.71 ± 6.27 versus 11.83 ± 1.29 mL/min; P = 0.0016), and perfusate flow rates (46.24 ± 12.49 versus 26.16 ± 4.57 mL/min; P = 0.0051) than kidneys after NMP. TUNEL staining of tissue sections showed significantly higher rates of apoptosis in kidneys after NMP (P = 0.027). CONCLUSIONS In our study, the direct comparison of HMP and NMP kidney perfusion in a translational model demonstrated superiority of HMP; however, further in vivo studies would be needed to validate those results.
Collapse
Affiliation(s)
- Natalie Vallant
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Nienke Wolfhagen
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Bynvant Sandhu
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Karim Hamaoui
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Terence Cook
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Charles Pusey
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Vassilios Papalois
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Bouari S, Eryigit Ö, de Bruin RWF, IJzermans JNM, Minnee RC. Optimizing porcine donor kidney preservation with normothermic or hypothermic machine perfusion: A systematic review. Artif Organs 2021; 45:1308-1316. [PMID: 34309868 PMCID: PMC8596691 DOI: 10.1111/aor.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/02/2021] [Accepted: 07/06/2021] [Indexed: 12/09/2022]
Abstract
We present an updated overview of the literature comparing normothermic with hypothermic machine perfusion in porcine kidneys. We conducted a systematic literature review in Embase, Medline Epub (Ovid), Cochrane Central, Web of Science, and Google Scholar on studies comparing normothermic (NMP) to hypothermic machine perfusion (HMP) in porcine kidneys. A meta‐analysis was judged inappropriate because of heterogeneity in study design and perfusion methods. The quality of evidence of each included study was assessed. We included 8 studies. One out of 5 studies reported a significant difference in peak renal blood flow in favor of NMP. Oxygen consumption was significantly higher in NMP kidneys in 2 out of 5 studies. Peak creatinine clearance in NMP was significantly higher than that in HMP in 1 out of 6 studies. Two out of 4 studies reported a higher degree of epithelial vacuolation in kidneys receiving NMP over HMP. None of the studies found a significant difference between NMP and HMP in peak serum creatinine or graft survival after autotransplantation. The results need to be interpreted with caution in view of the diversity in perfusion protocols, the low quality of evidence, and the limited sample sizes.
Collapse
Affiliation(s)
- Sarah Bouari
- Division of HPB & Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, Rotterdam, The Netherlands
| | - Özgür Eryigit
- Division of HPB & Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, Rotterdam, The Netherlands
| | - Ron W F de Bruin
- Division of HPB & Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, Rotterdam, The Netherlands
| | - Jan N M IJzermans
- Division of HPB & Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, Rotterdam, The Netherlands
| | - Robert C Minnee
- Division of HPB & Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Franzin R, Stasi A, Fiorentino M, Simone S, Oberbauer R, Castellano G, Gesualdo L. Renal Delivery of Pharmacologic Agents During Machine Perfusion to Prevent Ischaemia-Reperfusion Injury: From Murine Model to Clinical Trials. Front Immunol 2021; 12:673562. [PMID: 34295329 PMCID: PMC8290413 DOI: 10.3389/fimmu.2021.673562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Donor organ shortage still remains a serious obstacle for the access of wait-list patients to kidney transplantation, the best treatment for End-Stage Kidney Disease (ESKD). To expand the number of transplants, the use of lower quality organs from older ECD or DCD donors has become an established routine but at the price of increased incidence of Primary Non-Function, Delay Graft Function and lower-long term graft survival. In the last years, several improvements have been made in the field of renal transplantation from surgical procedure to preservation strategies. To improve renal outcomes, research has focused on development of innovative and dynamic preservation techniques, in order to assess graft function and promote regeneration by pharmacological intervention before transplantation. This review provides an overview of the current knowledge of these new preservation strategies by machine perfusions and pharmacological interventions at different timing possibilities: in the organ donor, ex-vivo during perfusion machine reconditioning or after implementation in the recipient. We will report therapies as anti-oxidant and anti-inflammatory agents, senolytics agents, complement inhibitors, HDL, siRNA and H2S supplementation. Renal delivery of pharmacologic agents during preservation state provides a window of opportunity to treat the organ in an isolated manner and a crucial route of administration. Even if few studies have been reported of transplantation after ex-vivo drugs administration, targeting the biological pathway associated to kidney failure (i.e. oxidative stress, complement system, fibrosis) might be a promising therapeutic strategy to improve the quality of various donor organs and expand organ availability.
Collapse
Affiliation(s)
- Rossana Franzin
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Simona Simone
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, University Clinic for Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
15
|
Elliott TR, Nicholson ML, Hosgood SA. Normothermic kidney perfusion: An overview of protocols and strategies. Am J Transplant 2021; 21:1382-1390. [PMID: 32897651 DOI: 10.1111/ajt.16307] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Normothermic machine perfusion (NMP) technologies are emerging as an important adjunct in organ preservation and transplantation. NMP can enable the reduction or avoidance of cold ischemia and allows for pretransplant measurement of function and metabolic status to assess the suitability of the organ for transplantation. The key requirement of NMP is to provide an environment that is protective to the organ, ensures optimal oxygen delivery and supports metabolic function. Red blood cell-based solutions, artificial hemoglobin solutions, and acellular solutions have all been utilized in NMP. However, there is no clear consensus on perfusion protocols. A period of NMP after hypothermic preservation is the most commonly used strategy. As an alternative, several groups have developed and tested the feasibility of more prolonged periods of NMP. There are only a few reports of the application of NMP in clinical kidney transplantation and each uses different approach and conditions. This review details the rationale for NMP protocols considering duration of NMP and different perfusate compositions in experimental and clinical models. We also include a discussion on the mechanistic action of NMP, comparison of subnormothermic and hypothermic conditions, the different logistical approaches and future requirements.
Collapse
Affiliation(s)
| | | | - Sarah A Hosgood
- Department of Surgery, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Lohmann S, Eijken M, Møldrup U, Møller BK, Hunter J, Moers C, Leuvenink H, Ploeg RJ, Clahsen-van Groningen MC, Hoogduijn M, Baan CC, Keller AK, Jespersen B. Ex Vivo Administration of Mesenchymal Stromal Cells in Kidney Grafts Against Ischemia-reperfusion Injury-Effective Delivery Without Kidney Function Improvement Posttransplant. Transplantation 2021; 105:517-528. [PMID: 32956281 DOI: 10.1097/tp.0000000000003429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mesenchymal stromal cell (MSC) therapy may improve renal function after ischemia-reperfusion injury in transplantation. Ex vivo renal intraarterial administration is a targeted delivery method, avoiding the lung vasculature, a known barrier for cellular therapies. In a randomized and blinded study, we tested the feasibility and effectiveness of MSC therapy in a donation after circulatory death autotransplantation model to improve posttransplant kidney function, using an ex vivo MSC delivery method similar to the clinical standard procedure of pretransplant cold graft flush. METHODS Kidneys exposed to 75 minutes of warm ischemia and 16 hours of static cold storage were intraarterially infused ex vivo with 10 million male porcine MSCs (Tx-MSC, n = 8) or vehicle (Tx-control, n = 8). Afterwards, the kidneys were autotransplanted after contralateral nephrectomy. Biopsies an hour after reperfusion confirmed the presence of MSCs in the renal cortex. Animals were observed for 14 days. RESULTS Postoperatively, peak plasma creatinine was 1230 and 1274 µmol/L (Tx-controls versus Tx-MSC, P = 0.69). During follow-up, no significant differences over time were detected between groups regarding plasma creatinine, plasma neutrophil gelatinase-associated lipocalin, or urine neutrophil gelatinase-associated lipocalin/creatinine ratio. At day 14, measured glomerular filtration rates were 40 and 44 mL/min, P = 0.66. Renal collagen content and fibrosis-related mRNA expression were increased in both groups but without significant differences between the groups. CONCLUSIONS We demonstrated intraarterial MSC infusion to transplant kidneys as a safe and effective method to deliver MSCs to the graft. However, we could not detect any positive effects of this cell treatment within 14 days of observation.
Collapse
Affiliation(s)
- Stine Lohmann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Marco Eijken
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Ulla Møldrup
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Bjarne K Møller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - James Hunter
- Nuffield Department of Surgical Sciences, Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University of Medical Center Groningen, Groningen, the Netherlands
| | - Henri Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University of Medical Center Groningen, Groningen, the Netherlands
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences, Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | - Martin Hoogduijn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Anna Krarup Keller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
17
|
Song J, Hao L, Wei W, Yang R, Wang C, Geng H, Li H, Wang S, Lu G, Feng T, Sun X, Liu S, Wang G, Cheng Y. A SNP in the 3'UTR of the porcine IGF-1 gene interacts with miR-new14 to affect IGF-1 expression, proliferation and apoptosis of PK-15 cells. Domest Anim Endocrinol 2020; 72:106430. [PMID: 32171113 DOI: 10.1016/j.domaniend.2019.106430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 11/06/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
The kidney of miniature pigs has been considered the most likely potential kidney source for patients needing kidney transplantation. Insulin-like growth factor 1 (IGF-1) is involved in regulating the growth of miniature pigs and inducing growth of kidneys. There are evidences showing that the SNPs in the 3'UTR of a gene may affect the gene expression by affecting the binding to a miRNA target site. In this study, one SNP (rs34142920) was screened in the IGF-1 3'UTR between 2 different body types of porcine breeds, Bama Xiang (BX) pigs, a miniature pig breed, and Large White (LW) pigs by sequencing. The secondary structure of the IGF-1 3'UTR mRNA containing the SNP in BX pigs is different from that of LW pigs. We then verified that there was a porcine miRNA (miR-new14) binding to this SNP in the 3'UTR of IGF-1 via cotransfecting the 3'UTR from the 2 breeds and miR-new14. We further found that the SNP downregulated mRNA and protein levels of IGF-1 by affecting the binding of miR-new14. To understand the function of miR-new14 in porcine kidney (PK-15) cells and its mechanism, cell proliferation and cell apoptosis assays were employed and results showed that proliferation viability of PK-15 cells was weakened and the apoptotic percentage of PK-15 cells was higher in the miR-new14 group. Porcine miRNA reduced the mRNA expression of AKT/ERK and protein levels of p-AKT/p-ERK. These results suggested that the expression of IGF-1 is influenced by this SNP and miR-new14 and that miR-new14 may suppress cell proliferation and promote cell apoptosis in PK-15 cells through regulating AKT and ERK signaling pathways, in which IGF-1 is involved.
Collapse
Affiliation(s)
- Jie Song
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Wenzhen Wei
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Rui Yang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Chunli Wang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Hongwei Geng
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Haoyang Li
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Siyao Wang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Guanhong Lu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Tianqi Feng
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Xiaotong Sun
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Songcai Liu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China; Five-Star Animal Health Pharmaceutical Factory of Jilin Province, 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Gang Wang
- Gan&Lee Pharmaceuticals, No. 8 Nanfeng West 1st Street, Huoxian, Tongzhou District, Beijing 101109, China.
| | - Yunyun Cheng
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China; College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Mariager CØ, Hansen ESS, Bech SK, Munk A, Kjaergaard U, Lyhne MD, Søberg K, Nielsen PF, Ringgaard S, Laustsen C. Graft assessment of the ex vivo perfused porcine kidney using hyperpolarized [1- 13 C]pyruvate. Magn Reson Med 2020; 84:2645-2655. [PMID: 32557782 DOI: 10.1002/mrm.28363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE Normothermic perfusion is an emerging strategy for donor organ preservation and therapy, incited by the high worldwide demand for organs for transplantation. Hyperpolarized MRI and MRS using [1-13 C]pyruvate and other 13 C-labeled molecules pose a novel way to acquire highly detailed information about metabolism and function in a noninvasive manner. This study investigates the use of this methodology as a means to study and monitor the state of ex vivo perfused porcine kidneys, in the context of kidney graft preservation research. METHODS Kidneys from four 40-kg Danish domestic pigs were perfused ex vivo with whole blood under normothermic conditions, using an MR-compatible perfusion system. Kidneys were investigated using 1 H MRI as well as hyperpolarized [1-13 C]pyruvate MRI and MRS. Using the acquired anatomical, functional and metabolic data, the state of the ex vivo perfused porcine kidney could be quantified. RESULTS Four kidneys were successfully perfused for 120 minutes and verified using a DCE perfusion experiment. Renal metabolism was examined using hyperpolarized [1-13 C]pyruvate MRI and MRS, and displayed an apparent reduction in pyruvate turnover compared with the usual case in vivo. Perfusion and blood gas parameters were in the normal ex vivo range. CONCLUSION This study demonstrates the ability to monitor ex vivo graft metabolism and function in a large animal model, resembling human renal physiology. The ability of hyperpolarized MRI and MRS to directly compare the metabolic state of an organ in vivo and ex vivo, in combination with the simple MR implementation of normothermic perfusion, renders this methodology a powerful future tool for graft preservation research.
Collapse
Affiliation(s)
| | | | - Sabrina Kahina Bech
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Anders Munk
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Uffe Kjaergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mads Dam Lyhne
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karsten Søberg
- Department of Anesthesia and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Fast Nielsen
- Department of Anesthesia and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Ringgaard
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Normothermic Ex Vivo Kidney Perfusion Improves Early DCD Graft Function Compared With Hypothermic Machine Perfusion and Static Cold Storage. Transplantation 2020; 104:947-955. [DOI: 10.1097/tp.0000000000003066] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Urine Recirculation Improves Hemodynamics and Enhances Function in Normothermic Kidney Perfusion. Transplant Direct 2020; 6:e541. [PMID: 32309627 PMCID: PMC7144999 DOI: 10.1097/txd.0000000000000985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/28/2020] [Indexed: 01/10/2023] Open
Abstract
Supplemental Digital Content is available in the text. The study compares urine recirculation (URC) to urine replacement (UR) with Ringer’s lactate in a porcine normothermic kidney machine perfusion (NMP) model using a preclinical prototype device.
Collapse
|
21
|
Abstract
Composite tissue (CT) preservation is important to outcomes after replant or transplant. Since the first limb replant, the mainstay of preservation has been static cold storage with the amputated part being placed in moistened gauze over ice. Historically, the gold-standard in solid organ preservation has been static cold storage with specialized solution, but this has recently evolved in the last few decades to develop technologies such as machine perfusion and even persufflation. This review explores the impact of cooling and oxygenation on CT, summarizes the work done in the area of CT preservation, discusses lessons learned from our experience in solid organ preservation, and proposes future directions.
Collapse
|
22
|
A Pilot Study of Postoperative Animal Welfare as a Guidance Tool in the Development of a Kidney Autotransplantation Model With Extended Warm Ischemia. Transplant Direct 2019; 5:e495. [PMID: 31773049 PMCID: PMC6831118 DOI: 10.1097/txd.0000000000000941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 01/10/2023] Open
Abstract
This pilot study aimed to maintain acceptable animal welfare in the development of a porcine autotransplantation model with severe and incremental renal ischemic injury, a model for usage in future intervention studies. Secondary aims were to develop and test methods to collect blood and urine without the need to restrain or use sedative and avoid transportation to optimize welfare of the pig.
Collapse
|
23
|
Fabry G, Doorschodt BM, Grzanna T, Boor P, Elliott A, Stollenwerk A, Tolba RH, Rossaint R, Bleilevens C. Cold Preflush of Porcine Kidney Grafts Prior to Normothermic Machine Perfusion Aggravates Ischemia Reperfusion Injury. Sci Rep 2019; 9:13897. [PMID: 31554887 PMCID: PMC6761287 DOI: 10.1038/s41598-019-50101-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
Normothermic machine perfusion (NMP) of kidney grafts is a promising new preservation method to improve graft quality and clinical outcome. Routinely, kidneys are washed out of blood remnants and cooled using organ preservation solutions prior to NMP. Here we assessed the effect of cold preflush compared to direct NMP. After 30 min of warm ischemia, porcine kidneys were either preflushed with cold histidine-tryptophan-ketoglutarate solution (PFNMP group) prior to NMP or directly subjected to NMP (DNMP group) using a blood/buffer solution. NMP was performed at a perfusion pressure of 75 mmHg for 6 h. Functional parameters were assessed as well as histopathological and biochemical analyses. Renal function as expressed by creatinine clearance, fractional excretion of sodium and total output of urine was inferior in PFNMP. Urine protein and neutrophil gelatinase-associated lipocalin (NGAL) concentrations as markers for kidney damage were significantly higher in the PFNMP group. Additionally, increased osmotic nephropathy was found after PFNMP. This study demonstrated that cold preflush prior to NMP aggravates ischemia reperfusion injury in comparison to direct NMP of warm ischemia-damaged kidney grafts. With increasing use of NMP systems for kidneys and other organs, further research into graft flushing during retrieval is warranted.
Collapse
Affiliation(s)
- Gregor Fabry
- Department of Anesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany. .,Department of Intensive Care and Intermediate Care, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Benedict M Doorschodt
- Institute for Laboratory Animal Science & Experimental Surgery, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Tim Grzanna
- Department of Thoracic and Cardiovascular Surgery, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology & Division of Nephrology, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Aaron Elliott
- Informatik 11-Embedded Software, RWTH Aachen University, Aachen, Germany
| | - André Stollenwerk
- Informatik 11-Embedded Software, RWTH Aachen University, Aachen, Germany
| | - René H Tolba
- Institute for Laboratory Animal Science & Experimental Surgery, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christian Bleilevens
- Department of Anesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
24
|
Combined Ex Vivo Hypothermic and Normothermic Perfusion for Assessment of High-risk Deceased Donor Human Kidneys for Transplantation. Transplantation 2019; 103:392-400. [PMID: 29952816 PMCID: PMC6365241 DOI: 10.1097/tp.0000000000002299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Despite careful clinical examination, procurement biopsy and assessment on hypothermic machine perfusion, a significant number of potentially useable deceased donor kidneys will be discarded because they are deemed unsuitable for transplantation. Ex vivo normothermic perfusion (EVNP) may be useful as a means to further assess high-risk kidneys to determine suitability for transplantation. Methods From June 2014 to October 2015, 7 kidneys (mean donor age, 54.3 years and Kidney Donor Profile Index, 79%) that were initially procured with the intention to transplant were discarded based on a combination of clinical findings, suboptimal biopsies, long cold ischemia time (CIT) and/or poor hypothermic perfusion parameters. They were subsequently placed on EVNP using oxygenated packed red blood cells and supplemental nutrition for a period of 3 hours. Continuous hemodynamic and functional parameters were assessed. Results After a mean CIT of 43.7 hours, all 7 kidneys appeared viable on EVNP with progressively increasing renal blood flow over the 3-hour period of perfusion. Five of the 7 kidneys had excellent macroscopic appearance, rapid increase in blood flow to 200 to 250 mL/min, urine output of 40 to 260 mL/h and increasing creatinine clearance. Conclusions Favorable perfusion characteristics and immediate function after a 3-hour course of EVNP suggests that high-risk kidneys subjected to long CIT may have been considered for transplantation. The combined use of ex vivo hypothermic and normothermic perfusion may be a useful strategy to more adequately assess and preserve high-risk kidneys deemed unsuitable for transplantation. A clinical trial will be necessary to validate the usefulness of this approach. The combined use of ex vivo hypothermic and normothermic perfusion may be a useful strategy to more adequately assess and preserve high-risk kidneys deemed unsuitable for transplantation.
Collapse
|
25
|
Use of Hypothermic Machine Perfusion to Identify Anatomic Variation Before Transplantation of a Pancake Kidney: A Case Report. Transplant Direct 2019; 5:e445. [PMID: 31165080 PMCID: PMC6511441 DOI: 10.1097/txd.0000000000000891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 11/26/2022] Open
|
26
|
Kaminski J, Delpech PO, Kaaki-Hosni S, Promeyrat X, Hauet T, Hannaert P. Oxygen Consumption by Warm Ischemia-Injured Porcine Kidneys in Hypothermic Static and Machine Preservation. J Surg Res 2019; 242:78-86. [PMID: 31071608 DOI: 10.1016/j.jss.2019.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 01/20/2023]
Abstract
Static cold storage (SCS) and hypothermic machine perfusion (HMP) are currently standard methods for renal grafts clinical preservation. Both methods are predominantly implemented without the active delivery of oxygen, even for donation after circulatory death-like kidneys. However, even under severe hypothermia (4°C-6°C), kidneys can consume oxygen and produce ATP. What is not established, though, is to what extent and how SCS and HMP compare in terms of oxygen. Using a porcine preclinical model of renal warm ischemia (WI) to compare SCS and HMP methods, we continuously monitored and quantified oxygen level and consumption along preservation; we also determined prepreservation and postpreservation cortical ATP level; values were given as median and [min; max] range. One-hour WI reduced ATP by ∼90% (from 3.3 [1.7; 4.5] mmol/L tissue in Controls). Oxygen consumption (QO2, μmol/min per 100 g) was determined from initial solution PO2 decrease (SCS and HMP) and from arterio-venous difference (HMP). In SCS and HMP, PO2 decreased rapidly (t1/2 ∼1 h) from atmospheric levels to 52.9 [38.0; 65.9] and 8.2 [3.0, 16.0] mmHg, respectively. In HMP, QO2 was 2.7 [0.4; 3.9] versus 0.5 [0.0; 1.3] in SCS (P < 0.05); postpreservation ATP amounted to 5.8 [3.2; 6.5] in HMP versus 0.1 [0.0; 0.2] in SCS. Despite hypothermic conditions in SCS or HMP, donation after circulatory death-like renal grafts require oxygen. Increased oxygen consumption, restored ATP level, and improved histological profile in HMP might explain the established HMP superiority over SCS. These results establish a rational basis for the use of oxygen in hypothermic preservation. Optimal levels required for preservation and graft-type variants remain to be determined.
Collapse
Affiliation(s)
| | - Pierre-Olivier Delpech
- INSERM U1082-IRTOMIT, CHU de Poitiers, Poitiers, France; Service d'Urologie, CHU de Poitiers, Poitiers, France
| | | | - Xavier Promeyrat
- Service d'Urologie et de Chirurgie de la Transplantation, Hôpital Édouard-Herriot, Université Claude-Bernard Lyon 1, Lyon, France
| | - Thierry Hauet
- INSERM U1082-IRTOMIT, CHU de Poitiers, Poitiers, France; Service de Biochimie, CHU de Poitiers, Poitiers, France
| | | |
Collapse
|
27
|
|
28
|
|