1
|
Mao B, Yuan W, Wu F, Yan Y, Wang B. Autophagy in hepatic ischemia-reperfusion injury. Cell Death Discov 2023; 9:115. [PMID: 37019879 PMCID: PMC10076300 DOI: 10.1038/s41420-023-01387-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver resection or liver transplantation that can seriously affect patient's prognosis. There is currently no definitive and effective treatment strategy for HIRI. Autophagy is an intracellular self-digestion pathway initiated to remove damaged organelles and proteins, which maintains cell survival, differentiation, and homeostasis. Recent studies have shown that autophagy is involved in the regulation of HIRI. Numerous drugs and treatments can change the outcome of HIRI by controlling the pathways of autophagy. This review mainly discusses the occurrence and development of autophagy, the selection of experimental models for HIRI, and the specific regulatory pathways of autophagy in HIRI. Autophagy has considerable potential in the treatment of HIRI.
Collapse
Affiliation(s)
- Benliang Mao
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Wei Yuan
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China
| | - Fan Wu
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China
| | - Yong Yan
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China
| | - Bailin Wang
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China.
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Over-Dose Lithium Toxicity as an Occlusive-like Syndrome in Rats and Gastric Pentadecapeptide BPC 157. Biomedicines 2021; 9:biomedicines9111506. [PMID: 34829735 PMCID: PMC8615292 DOI: 10.3390/biomedicines9111506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022] Open
Abstract
Due to endothelial impairment, high-dose lithium may produce an occlusive-like syndrome, comparable to permanent occlusion of major vessel-induced syndromes in rats; intracranial, portal, and caval hypertension, and aortal hypotension; multi-organ dysfunction syndrome; brain, heart, lung, liver, kidney, and gastrointestinal lesions; arterial and venous thrombosis; and tissue oxidative stress. Stable gastric pentadecapeptide BPC 157 may be a means of therapy via activating loops (bypassing vessel occlusion) and counteracting major occlusion syndromes. Recently, BPC 157 counteracted the lithium sulfate regimen in rats (500 mg/kg/day, ip, for 3 days, with assessment at 210 min after each administration of lithium) and its severe syndrome (muscular weakness and prostration, reduced muscle fibers, myocardial infarction, and edema of various brain areas). Subsequently, BPC 157 also counteracted the lithium-induced occlusive-like syndrome; rapidly counteracted brain swelling and intracranial (superior sagittal sinus) hypertension, portal hypertension, and aortal hypotension, which otherwise would persist; counteracted vessel failure; abrogated congestion of the inferior caval and superior mesenteric veins; reversed azygos vein failure; and mitigated thrombosis (superior mesenteric vein and artery), congestion of the stomach, and major hemorrhagic lesions. Both regimens of BPC 157 administration also counteracted the previously described muscular weakness and prostration (as shown in microscopic and ECG recordings), myocardial congestion and infarction, in addition to edema and lesions in various brain areas; marked dilatation and central venous congestion in the liver; large areas of congestion and hemorrhage in the lung; and degeneration of proximal and distal tubules with cytoplasmic vacuolization in the kidney, attenuating oxidative stress. Thus, BPC 157 therapy overwhelmed high-dose lithium intoxication in rats.
Collapse
|
3
|
Ritschl PV, Günther J, Hofhansel L, Ernst S, Ebner S, Sattler A, Weiß S, Weissenbacher A, Oberhuber R, Cardini B, Öllinger R, Biebl M, Denecke C, Margreiter C, Resch T, Schneeberger S, Maglione M, Kotsch K, Pratschke J. Perioperative Perfusion of Allografts with Anti-Human T-lymphocyte Globulin Does Not Improve Outcome Post Liver Transplantation-A Randomized Placebo-Controlled Trial. J Clin Med 2021; 10:jcm10132816. [PMID: 34202355 PMCID: PMC8267618 DOI: 10.3390/jcm10132816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the lack of suitable organs transplant surgeons have to accept unfavorable extended criteria donor (ECD) organs. Recently, we demonstrated that the perfusion of kidney organs with anti-human T-lymphocyte globulin (ATLG) prior to transplantation ameliorates ischemia-reperfusion injury (IRI). Here, we report on the results of perioperative ATLG perfusion in a randomized, single-blinded, placebo-controlled, feasibility trial (RCT) involving 30 liver recipients (LTx). Organs were randomly assigned for perfusion with ATLG/Grafalon® (AP) (n = 16) or saline only (control perfusion = CP) (n = 14) prior to implantation. The primary endpoint was defined as graft function reflected by aspartate transaminase (AST) values at day 7 post-transplantation (post-tx). With respect to the primary endpoint, no significant differences in AST levels were shown in the intervention group at day 7 (AP: 53.0 ± 21.3 mg/dL, CP: 59.7 ± 59.2 mg/dL, p = 0.686). Similarly, exploratory analysis of secondary clinical outcomes (e.g., patient survival) and treatment-specific adverse events revealed no differences between the study groups. Among liver transplant recipients, pre-operative organ perfusion with ATLG did not improve short-term outcomes, compared to those who received placebo perfusion. However, ATLG perfusion of liver grafts was proven to be a safe procedure without the occurrence of relevant adverse events.
Collapse
Affiliation(s)
- Paul Viktor Ritschl
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (P.V.R.); (S.W.); (R.Ö.); (M.B.); (C.D.); (J.P.)
- Clinician Scientist Program, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| | - Julia Günther
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Lena Hofhansel
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, 52074 Aachen, Germany
| | - Stefanie Ernst
- Biostatistics Unit, Clinical Research Unit, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Susanne Ebner
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Arne Sattler
- Department of General, Visceral- and Vascular Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany;
| | - Sascha Weiß
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (P.V.R.); (S.W.); (R.Ö.); (M.B.); (C.D.); (J.P.)
| | - Annemarie Weissenbacher
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Rupert Oberhuber
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Benno Cardini
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Robert Öllinger
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (P.V.R.); (S.W.); (R.Ö.); (M.B.); (C.D.); (J.P.)
| | - Matthias Biebl
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (P.V.R.); (S.W.); (R.Ö.); (M.B.); (C.D.); (J.P.)
| | - Christian Denecke
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (P.V.R.); (S.W.); (R.Ö.); (M.B.); (C.D.); (J.P.)
| | - Christian Margreiter
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Thomas Resch
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Stefan Schneeberger
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Manuel Maglione
- Center for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 5020 Innsbruck, Austria; (J.G.); (L.H.); (S.E.); (A.W.); (R.O.); (B.C.); (C.M.); (T.R.); (S.S.); (M.M.)
| | - Katja Kotsch
- Department of General, Visceral- and Vascular Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany;
- Correspondence: ; Tel.: +49-30-450-552247
| | - Johann Pratschke
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (P.V.R.); (S.W.); (R.Ö.); (M.B.); (C.D.); (J.P.)
| |
Collapse
|
4
|
Álvarez-Mercado AI, Rojano-Alfonso C, Micó-Carnero M, Caballeria-Casals A, Peralta C, Casillas-Ramírez A. New Insights Into the Role of Autophagy in Liver Surgery in the Setting of Metabolic Syndrome and Related Diseases. Front Cell Dev Biol 2021; 9:670273. [PMID: 34141709 PMCID: PMC8204012 DOI: 10.3389/fcell.2021.670273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/23/2021] [Indexed: 01/18/2023] Open
Abstract
Visceral obesity is an important component of metabolic syndrome, a cluster of diseases that also includes diabetes and insulin resistance. A combination of these metabolic disorders damages liver function, which manifests as non-alcoholic fatty liver disease (NAFLD). NAFLD is a common cause of abnormal liver function, and numerous studies have established the enormously deleterious role of hepatic steatosis in ischemia-reperfusion (I/R) injury that inevitably occurs in both liver resection and transplantation. Thus, steatotic livers exhibit a higher frequency of post-surgical complications after hepatectomy, and using liver grafts from donors with NAFLD is associated with an increased risk of post-surgical morbidity and mortality in the recipient. Diabetes, another MetS-related metabolic disorder, also worsens hepatic I/R injury, and similar to NAFLD, diabetes is associated with a poor prognosis after liver surgery. Due to the large increase in the prevalence of MetS, NAFLD, and diabetes, their association is frequent in the population and therefore, in patients requiring liver resection and in potential liver graft donors. This scenario requires advancement in therapies to improve postoperative results in patients suffering from metabolic diseases and undergoing liver surgery; and in this sense, the bases for designing therapeutic strategies are in-depth knowledge about the molecular signaling pathways underlying the effects of MetS-related diseases and I/R injury on liver tissue. A common denominator in all these diseases is autophagy. In fact, in the context of obesity, autophagy is profoundly diminished in hepatocytes and alters mitochondrial functions in the liver. In insulin resistance conditions, there is a suppression of autophagy in the liver, which is associated with the accumulation of lipids, being this is a risk factor for NAFLD. Also, oxidative stress occurring in hepatic I/R injury promotes autophagy. The present review aims to shed some light on the role of autophagy in livers undergoing surgery and also suffering from metabolic diseases, which may lead to the discovery of effective therapeutic targets that could be translated from laboratory to clinical practice, to improve postoperative results of liver surgeries when performed in the presence of one or more metabolic diseases.
Collapse
Affiliation(s)
- Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Granada, Spain.,Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Granada, Spain.,Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Carlos Rojano-Alfonso
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Micó-Carnero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria "Bicentenario 2010", Ciudad Victoria, Mexico.,Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros, Mexico
| |
Collapse
|
5
|
Guo H, Gao K, Zou X, Deng Q, Chen M, Liu F. [Crocetin promotes autophagy in injured rat hepatocytes induced by lipopolysaccharide and D-galactosamine in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 38:1121-1125. [PMID: 30377103 DOI: 10.12122/j.issn.1673-4254.2018.09.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To observe the effect of crocetin on autophagy in rat hepatocytes exposed to lipopolysaccharide (LPS) and D-galactosamine (D-gal) and explore the mechanism. METHODS Cultured rat hepatocytes were exposed to LPS (1 mg/L) and Dgal (60 mg/L) to induce cell injury and treated with crocetin, 3MA, or crocetin+3MA. Twelve hours after the treatments, the cells were examined for levels of ALT, AST and LDH in the supernatant using ELISA. LC3 fluorescence in the cells following immunofluorescence staining was observed using fluorescence microscopy. Autophagosomes in the cells were observed by transmission electron microscopy, and the cellular expressions of LC3, p62 and SIRT1 were detected using Western blotting. RESULTS The levels of ALT, AST and LDH in the hepatocytes were elevated after LPS- and D-gal-induced injury, reached the highest levels after 3MA treatment, but were decreased significantly by crocetin treatment. LC3 fluorescence increased obviously in the injured hepatoctyes, and the increment was the most obvious in crocetin-treated cells; LC3 fluorescence was decreased significantly after 3MA treatment. Cell injury induced obvious increase in autophagy in the hepatocytes, and the number of autophagosomes increased significantly after crocetin treatment but was reduced significantly after 3MA treatment. The cell injury caused an obvious up-regulation of LC3 and SIRT1 expression and down-regulated p62 expression. LC3 and SIRT1 expression levels were the highest and the expression of p62 was the lowest in cells with crocetin treatment. 3MA treatment significantly reduced the expression of LC3 and SIRT1 and increased the expression of p62 in the injured cells. CONCLUSIONS Autophagy is increased in injured rat hepatocytes, and crocetin can promote autophagy in the injured cells to reduce further cell injury.
Collapse
Affiliation(s)
- Hongxing Guo
- Department of Gastroenterology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Ke Gao
- Department of Pathology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Xingjian Zou
- Department of Gastroenterology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Qingwen Deng
- Department of Gastroenterology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Mengxue Chen
- Department of Gastroenterology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Faquan Liu
- Department of Gastroenterology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| |
Collapse
|
6
|
Ischemia-Reperfusion Injury in Aged Livers-The Energy Metabolism, Inflammatory Response, and Autophagy. Transplantation 2018; 102:368-377. [PMID: 29135887 DOI: 10.1097/tp.0000000000001999] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because of the lack of adequate organs, the number of patients with end-stage liver diseases, acute liver failure or hepatic malignancies waiting for liver transplantation is constantly increasing. Accepting aged liver grafts is one of the strategies expanding the donor pool to ease the discrepancy between the growing demand and the limited supply of donor organs. However, recipients of organs from old donors may show an increased posttransplantation morbidity and mortality due to enhanced ischemia-reperfusion injury. Energy metabolism, inflammatory response, and autophagy are 3 critical processes which are involved in the aging progress as well as in hepatic ischemia-reperfusion injury. Compared with young liver grafts, impairment of energy metabolism in aged liver grafts leads to lower adenosine triphosphate production and an enhanced generation of free radicals, both aggravating the inflammatory response. The aggravated inflammatory response determines the extent of hepatic ischemia-reperfusion injury and augments the liver damage. Autophagy protects cells by removal of damaged organelles, including dysfunctional mitochondria, a process impaired in aging and involved in ischemia-reperfusion-related apoptotic cell death. Furthermore, autophagic degradation of cellular compounds relieves intracellular adenosine triphosphate level for the energy depressed cells. Strategies targeting the mechanisms involved in energy metabolism, inflammatory response, and autophagy might be especially useful to prevent the increased risk for ischemia-reperfusion injury in aged livers after major hepatic surgery.
Collapse
|
7
|
Ritschl PV, Günther J, Hofhansel L, Kühl AA, Sattler A, Ernst S, Friedersdorff F, Ebner S, Weiss S, Bösmüller C, Weissenbacher A, Oberhuber R, Cardini B, Öllinger R, Schneeberger S, Biebl M, Denecke C, Margreiter C, Resch T, Aigner F, Maglione M, Pratschke J, Kotsch K. Graft Pre-conditioning by Peri-Operative Perfusion of Kidney Allografts With Rabbit Anti-human T-lymphocyte Globulin Results in Improved Kidney Graft Function in the Early Post-transplantation Period-a Prospective, Randomized Placebo-Controlled Trial. Front Immunol 2018; 9:1911. [PMID: 30197644 PMCID: PMC6117415 DOI: 10.3389/fimmu.2018.01911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction: Although prone to a higher degree of ischemia reperfusion injury (IRI), the use of extended criteria donor (ECD) organs has become reality in transplantation. We therefore postulated that peri-operative perfusion of renal transplants with anti-human T-lymphocyte globulin (ATLG) ameliorates IRI and results in improved graft function. Methods: We performed a randomized, single-blinded, placebo-controlled trial involving 50 kidneys (KTx). Prior to implantation organs were perfused and incubated with ATLG (AP) (n = 24 kidney). Control organs (CP) were perfused with saline only (n = 26 kidney). Primary endpoint was defined as graft function reflected by serum creatinine at day 7 post transplantation (post-tx). Results: AP-KTx recipients illustrated significantly better graft function at day 7 post-tx as reflected by lower creatinine levels, whereas no treatment effect was observed after 12 months surveillance. During the early hospitalization phase, 16 of the 26 CP-KTx patients required dialysis during the first 7 days post-tx, whereas only 10 of the 24 AP-KTx patients underwent dialysis. No treatment-specific differences were detected for various lymphocytes subsets in the peripheral blood of patients. Additionally, mRNA analysis of 0-h biopsies post incubation with ATLG revealed no changes of intragraft inflammatory expression patterns between AP and CP organs. Conclusion: We here present the first clinical study on peri-operative organ perfusion with ATLG illustrating improved graft function in the early period post kidney transplantation. Clinical Trial Registration:www.ClinicalTrials.gov, NCT03377283
Collapse
Affiliation(s)
- Paul V Ritschl
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,BIH Charité Clinical Scientist Program, Berlin Institute of Health, Berlin, Germany
| | - Julia Günther
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Lena Hofhansel
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Anja A Kühl
- iPATH.Berlin-Immunopathology for Experimental Models, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arne Sattler
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Ernst
- Biostatistics Unit, Clinical Research Unit, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Susanne Ebner
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sascha Weiss
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Bösmüller
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Annemarie Weissenbacher
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Cardini
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Öllinger
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Biebl
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Denecke
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Margreiter
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Resch
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Aigner
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Manuel Maglione
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Pratschke
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katja Kotsch
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Wang X, Song X, Si Y, Xia J, Wang B, Wang P. Effect of autophagy-associated proteins on the arecoline-induced liver injury in mice. Exp Ther Med 2018; 16:3041-3049. [PMID: 30214523 PMCID: PMC6125830 DOI: 10.3892/etm.2018.6564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Arecoline can be used to treat diseases including glaucoma and tapeworm infection, however, long-term administration can cause severe adverse effects, including oral submucosal fibrosis, oral cancer, hepatic injury and liver cancer. Autophagy serves a role in these injuries. The present study established a mouse model of arecoline-induced hepatic injury and investigated the role of autophagy-associated proteins in this injury. The results indicated that the expression levels of the autophagy marker protein microtubule associated protein 1 light chain 3 B (MAP1LC3B) and autophagy-promoting protein beclin 1 were elevated in the injured hepatic cells, while the expression levels of a well-known negative regulator of autophagy, mammalian target of rapamycin (mTOR), were reduced. Following treatment of the hepatic injury with glutathione, the liver function improved and liver damage was reduced effectively. Compared with the control group, the expression levels of both MAP1LC3B and beclin 1 were significantly upregulated in the glutathione-treated mice, but the expression of mTOR was significantly downregulated. It may be concluded that in the process of protecting against arecoline-induced hepatic injury, glutathione cooperates with mTOR and beclin 1 to accelerate autophagy, maintaining stable cell morphology and cellular functions.
Collapse
Affiliation(s)
- Xia Wang
- Department of Pathology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xinhong Song
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Youjiao Si
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Jikai Xia
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Bin Wang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| |
Collapse
|
9
|
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a crucial cause of liver damage occurring in some surgical procedures including hepatic resection and liver transplantation, and it remains the key potential cause of hepatic failure after liver transplantation. The mechanism of hepatic IRI is diverse and complicated, and involves various stages. Autophagy, an evolutionarily conserved process responsible for the degradation of damaged and dysfunctional cytoplasmic contents such as mitochondrion and lipids, regulates cellular homeostasis and survival during hepatic IRI. This review summarizes the molecular mechanisms underlying hepatic IRI, epitomizes the functions of autophagy, and describes the prospects of using autophagy as a therapeutic target for hepatic IRI.
Collapse
Affiliation(s)
- Jian Gu
- Department of Gastrointestinal Surgery, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Ji-Liang Wang
- Department of Gastrointestinal Surgery, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|