1
|
Li X, Xu Y, Si JX, Gu F, Ma YY. Role of Agrin in tissue repair and regeneration: From mechanisms to therapeutic opportunities (Review). Int J Mol Med 2024; 54:98. [PMID: 39301653 PMCID: PMC11410309 DOI: 10.3892/ijmm.2024.5422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/01/2024] [Indexed: 09/22/2024] Open
Abstract
Tissue regeneration is a complex process that involves the recruitment of various types of cells for healing after injury; it is mediated by numerous precise interactions. However, the identification of effective targets for improving tissue regeneration remains a challenge. As an extracellular matrix protein, Agrin plays a critical role in neuromuscular junction formation. Furthermore, recent studies have revealed the role of Agrin in regulating tissue proliferation and regeneration, which contributes to the repair process of injured tissues. An in‑depth understanding of the role of Agrin will therefore be of value. Given that repair and regeneration processes occur in various parts of the human body, the present systematic review focuses on the role of Agrin in typical tissue and highlights the potential signaling pathways that are involved in Agrin‑induced repair and regeneration. This review offers important insight into novel strategies for the future clinical applications of Agrin‑based therapies, which may represent a feasible treatment option for patients who require organ replacement or repair.
Collapse
Affiliation(s)
- Xiang Li
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yuan Xu
- Department of Gastrointestinal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315048, P.R. China
| | - Jing-Xing Si
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Fang Gu
- Department of Paediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Ying-Yu Ma
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
2
|
Qaisar R, Karim A, Muhammad T, Ahmad F. Butyrate supplementation reduces sarcopenia by repairing neuromuscular junction in patients with chronic obstructive pulmonary disease. Respir Med 2024; 222:107510. [PMID: 38135194 DOI: 10.1016/j.rmed.2023.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is associated with an intestinal leak and neuromuscular junction (NMJ) degradation, which contributes to physical compromise and accelerated age-related muscle loss, called sarcopenia. However, the relevant interventions partly remain ineffective. We investigated the effects of exogenous butyrate on sarcopenia and physical capacity with relevance to intestinal permeability and NMJ integrity in COPD patients. METHODS COPD patients were randomized into placebo (n = 67) and butyrate (n = 64) groups in a double-blind manner. The patients in the butyrate group received one 300 mg capsule a day for 12 weeks. We measured circulating markers of intestinal leak (zonulin), systemic bacterial load (LBP), and NMJ loss (CAF22), along with handgrip strength (HGS), and short physical performance battery (SPPB) at baseline and 12 weeks. RESULTS Butyrate supplementation improved HGS and gait speed in COPD patients. Among SPPB indices, butyrate improved the ability to maintain postural balance and walking and prevented a decline in the ability to rise from a chair. Butyrate also reduced the plasma levels of zonulin, LBP, and CAF22 levels in COPD patients (all p < 0.05). Regression analysis revealed significant associations of plasma zonulin and CAF22 with HGS, gait speed, and cumulative SPPB scores in butyrate group. These changes were associated with reduced markers of inflammation and muscle damage. CONCLUSION Butyrate may provide a therapeutic approach to sarcopenia and physical dependency in COPD by repairing intestinal leak and NMJ loss.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, Gomal University, Dera Ismail Khan, 30130, Pakistan
| | - Firdos Ahmad
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Space Medicine Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
3
|
Yang J, Cao J, Min S, Li P, Lv F, Ren L. Recombinant human neuregulin-1 alleviates immobilization-induced neuromuscular dysfunction via neuregulin-1/ErbB signaling pathway in rat. Arch Biochem Biophys 2023:109631. [PMID: 37276924 DOI: 10.1016/j.abb.2023.109631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023]
Abstract
Immobilization-induced Neuromuscular Dysfunction (NMD) increases morbidity and mortality of patients in Intensive Care Units. However, the underlying mechanism of NMD remain poorly elucidated which limited the development of therapeutic method for NMD. Here we developed an immobilization rat model and tested the hypothesis that decreased expression of NRG-1, abnormal expression and distribution of nicotinic acetylcholine receptors (nAChRs) in skeletal muscle caused by immobilization can lead to NMD. To investigate the role of NRG-1/ErbB pathway on immobilization-induced NMD, exogenous recombinant human neuregulin-1 (rhNRG-1) was used to increase the expression of NRG-1 in skeletal muscle during immobilization. It was observed rhNRG-1 significantly alleviated the muscle loss and enhanced the expression of ε-nAChR, while diminished the expression of γ- and α7-nAChR and NMD. Interestingly, ErbB inhibitor PD158780 blocked the protective effects of rhNRG-1. Collectively, the results of present study suggested that rhNRG-1 attenuated immobilization-induced muscle loss and NMD, suppressed γ- and α7-nAChR production, enhanced ε-nAChR synthesis via activating NRG-1/ErbB pathway. Taken together, our findings provide novel insights into NMD contribution, suggesting that the rhNRG-1 is a promising therapy to protect against immobilization-induced myopathy.
Collapse
Affiliation(s)
- Jun Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jun Cao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Su Min
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Ping Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Feng Lv
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Li Ren
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
4
|
Castro PATS, Machanocker DH, Luna GF, Barbosa GM, Cunha JE, Cunha TM, Cunha FQ, Russo TL, Salvini TF. Clinical-Like Cryotherapy in Acute Knee Arthritis Protects Neuromuscular Junctions of Quadriceps and Reduces Joint Inflammation in Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7442289. [PMID: 35103239 PMCID: PMC8800614 DOI: 10.1155/2022/7442289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis is an autoimmune and inflammatory disease that affects synovial joint tissues and skeletal muscle. Clinical-like cryotherapy benefits signs of joint inflammation in knee osteoarthritis after 60 days of anterior cruciate ligament transection surgery. However, it is unknown whether it also benefits acute knee arthritis (e.g., reduces inflammatory process and protects neuromuscular junction [NMJ] and muscle fibers). We aimed to analyze the effects of clinical-like cryotherapy on NMJ and quadriceps muscle fibers in a model of acute knee arthritis. Twenty-four male C57BL/6 mice (20 to 25 g) were randomly allocated into three groups: control (mice with no intervention), antigen-induced arthritis (AIA; mice sensitized and immunized with intra-articular [i.a.] injection of methylated bovine serum albumin [mBSA]), and AIA+cryotherapy (mice sensitized, immunized with i.a. injection of mBSA, and submitted to a clinical-like cryotherapy protocol). Twenty-one days after sensitization, arthritis was induced in immunized mice via i.a. injection of mBSA (100 μg/joint). Two clinical-like cryotherapy sessions (crushed ice pack for 20 min) were applied two hours apart. The first session was applied immediately after i.a. injection of mBSA. The quadriceps was removed two hours after the second clinical-like cryotherapy session for morphological analysis of muscle fibers (cross-sectional area), frequency distribution of muscle fiber area (%), and NMJ (area, perimeter, and maximum diameter). Gene expressions of mRNA involved in NMJ signaling (γ-nAChR, α1-nAChR, ε-nAChR, Agrin-MusK-Rapsyn, α-dystrobrevin, and utrophin) and atrophy (muscle RING-finger protein-1 and Atrogin-1) pathways were analyzed. Inflammatory signs were assessed in knee joint (swelling, articular surface temperature, and neutrophil migration in synovial fluid). Regarding morphological analysis of muscle fibers, 180 to 270 and >270 μm2 classes were higher in the AIA+cryotherapy than the AIA group. Area, perimeter, and maximum diameter of NMJ also increased in the AIA+cryotherapy compared with the control group. Agrin mRNA expression increased in the AIA+cryotherapy compared with the control and AIA groups. In the atrophy pathway, Atrogin-1 increased compared with the control and AIA groups. The AIA+cryotherapy group reduced knee swelling and neutrophil migration compared with the AIA group. In conclusion, clinical-like cryotherapy increased Agrin expression, contributing to NMJ maintenance and increased Atrogin-1 expression, thus protecting NMJ and muscle fiber. Furthermore, clinical-like cryotherapy reduced inflammatory signs (swelling and neutrophil migration) of acute knee arthritis.
Collapse
Affiliation(s)
- Paula A. T. S. Castro
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Dafiner H. Machanocker
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Genoveva F. Luna
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Germanna M. Barbosa
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Jonathan E. Cunha
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thiago L. Russo
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Tania F. Salvini
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
5
|
Megalocytivirus Induces Complicated Fish Immune Response at Multiple RNA Levels Involving mRNA, miRNA, and circRNA. Int J Mol Sci 2021; 22:ijms22063156. [PMID: 33808870 PMCID: PMC8003733 DOI: 10.3390/ijms22063156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
Megalocytivirus is an important viral pathogen to many farmed fishes, including Japanese flounder (Paralichthys olivaceus). In this study, we examined megalocytivirus-induced RNA responses in the spleen of flounder by high-throughput sequencing and integrative analysis of various RNA-seq data. A total of 1327 microRNAs (miRNAs), including 368 novel miRNAs, were identified, among which, 171 (named DEmiRs) exhibited significantly differential expressions during viral infection in a time-dependent manner. For these DEmiRs, 805 differentially expressed target mRNAs (DETmRs) were predicted, whose expressions not only significantly changed after megalocytivirus infection but were also negatively correlated with their paired DEmiRs. Integrative analysis of immune-related DETmRs and their target DEmiRs identified 12 hub DEmiRs, which, together with their corresponding DETmRs, formed an interaction network containing 84 pairs of DEmiR and DETmR. In addition to DETmRs, 19 DEmiRs were also found to regulate six key immune genes (mRNAs) differentially expressed during megalocytivirus infection, and together they formed a network consisting of 21 interactive miRNA-messenger RNA (mRNA) pairs. Further analysis identified 9434 circular RNAs (circRNAs), 169 of which (named DEcircRs) showed time-specific and significantly altered expressions during megalocytivirus infection. Integrated analysis of the DETmR-DEmiR and DEcircR-DEmiR interactions led to the identification of a group of competing endogenous RNAs (ceRNAs) constituted by interacting triplets of circRNA, miRNA, and mRNA involved in antiviral immunity. Together these results indicate that complicated regulatory networks of different types of non-coding RNAs and coding RNAs are involved in megalocytivirus infection.
Collapse
|