1
|
Bakinowska E, Kiełbowski K, Pawlik A. The Role of MicroRNA in the Pathogenesis of Acute Kidney Injury. Cells 2024; 13:1559. [PMID: 39329743 PMCID: PMC11444149 DOI: 10.3390/cells13181559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Acute kidney injury (AKI) describes a condition associated with elevated serum creatinine levels and decreased glomerular filtration rate. AKI can develop as a result of sepsis, the nephrotoxic properties of several drugs, and ischemia/reperfusion injury. Renal damage can be associated with metabolic acidosis, fluid overload, and ionic disorders. As the molecular background of the pathogenesis of AKI is insufficiently understood, more studies are needed to identify the key signaling pathways and molecules involved in the progression of AKI. Consequently, future treatment methods may be able to restore organ function more rapidly and prevent progression to chronic kidney disease. MicroRNAs (miRNAs) are small molecules that belong to the non-coding RNA family. Recently, numerous studies have demonstrated the altered expression profile of miRNAs in various diseases, including inflammatory and neoplastic conditions. As miRNAs are major regulators of gene expression, their dysregulation is associated with impaired homeostasis and cellular behavior. The aim of this article is to discuss current evidence on the involvement of miRNAs in the pathogenesis of AKI.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Tsuji K, Nakanoh H, Fukushima K, Kitamura S, Wada J. MicroRNAs as Biomarkers and Therapeutic Targets for Acute Kidney Injury. Diagnostics (Basel) 2023; 13:2893. [PMID: 37761260 PMCID: PMC10529274 DOI: 10.3390/diagnostics13182893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome where a rapid decrease in kidney function and/or urine output is observed, which may result in the imbalance of water, electrolytes and acid base. It is associated with poor prognosis and prolonged hospitalization. Therefore, an early diagnosis and treatment to avoid the severe AKI stage are important. While several biomarkers, such as urinary L-FABP and NGAL, can be clinically useful, there is still no gold standard for the early detection of AKI and there are limited therapeutic options against AKI. miRNAs are non-coding and single-stranded RNAs that silence their target genes in the post-transcriptional process and are involved in a wide range of biological processes. Recent accumulated evidence has revealed that miRNAs may be potential biomarkers and therapeutic targets for AKI. In this review article, we summarize the current knowledge about miRNAs as promising biomarkers and potential therapeutic targets for AKI, as well as the challenges in their clinical use.
Collapse
Affiliation(s)
- Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroyuki Nakanoh
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Program in Membrane Biology, Center for Systems Biology, Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Nursing Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
3
|
Mahtal N, Lenoir O, Tinel C, Anglicheau D, Tharaux PL. MicroRNAs in kidney injury and disease. Nat Rev Nephrol 2022; 18:643-662. [PMID: 35974169 DOI: 10.1038/s41581-022-00608-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by degrading or repressing the translation of their target messenger RNAs. As miRNAs are critical regulators of cellular homeostasis, their dysregulation is a crucial component of cell and organ injury. A substantial body of evidence indicates that miRNAs are involved in the pathophysiology of acute kidney injury (AKI), chronic kidney disease and allograft damage. Different subsets of miRNAs are dysregulated during AKI, chronic kidney disease and allograft rejection, which could reflect differences in the physiopathology of these conditions. miRNAs that have been investigated in AKI include miR-21, which has an anti-apoptotic role, and miR-214 and miR-668, which regulate mitochondrial dynamics. Various miRNAs are downregulated in diabetic kidney disease, including the miR-30 family and miR-146a, which protect against inflammation and fibrosis. Other miRNAs such as miR-193 and miR-92a induce podocyte dedifferentiation in glomerulonephritis. In transplantation, miRNAs have been implicated in allograft rejection and injury. Further work is needed to identify and validate miRNAs as biomarkers of graft function and of kidney disease development and progression. Use of combinations of miRNAs together with other molecular markers could potentially improve diagnostic or predictive power and facilitate clinical translation. In addition, targeting specific miRNAs at different stages of disease could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Nassim Mahtal
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France
| | - Olivia Lenoir
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| | - Claire Tinel
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| |
Collapse
|
4
|
Ke P, Qian L, Zhou Y, Feng L, Zhang Z, Zheng C, Chen M, Huang X, Wu X. Identification of hub genes and transcription factor-miRNA-mRNA pathways in mice and human renal ischemia-reperfusion injury. PeerJ 2021; 9:e12375. [PMID: 34754625 PMCID: PMC8555504 DOI: 10.7717/peerj.12375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background Renal ischemia-reperfusion injury (IRI) is a disease with high incidence rate in kidney related surgery. Micro RNA (miRNA) and transcription factors (TFs) are widely involved in the process of renal IRI through regulation of their target genes. However, the regulatory relationships and functional roles of TFs, miRNAs and mRNAs in the progression of renal IRI are insufficiently understood. The present study aimed to clarify the underlying mechanism of regulatory relationships in renal IRI. Methods Six gene expression profiles were downloaded from Gene Expression Omnibus (GEO). Differently expressed genes (DEGs) and differently expressed miRNAs (DEMs) were identified through RRA integrated analysis of mRNA datasets (GSE39548, GSE87025, GSE52004, GSE71647, and GSE131288) and miRNA datasets (GSE29495). miRDB and TransmiR v2.0 database were applied to predict target genes of miRNA and TFs, respectively. DEGs were applied for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, followed with construction of protein-protein interaction (PPI) network. Then, the TF-miRNA-mRNA network was constructed. Correlation coefficient and ROC analysis were used to verify regulatory relationship between genes and their diagnostic value in GSE52004. Furthermore, in independent mouse RNA-seq datasets GSE98622, human RNA-seq GSE134386 and in vitro, the expression of hub genes and genes from the network were observed and correlation coefficient and ROC analysis were validated. Results A total of 21 DEMs and 187 DEGs were identified in renal IRI group compared to control group. The results of PPI analysis showed 15 hub genes. The TF-miRNA-mRNA regulatory network was constructed and several important pathways were identified and further verified, including Junb-miR-223-Ranbp3l, Cebpb-miR-223-Ranbp3l, Cebpb-miR-21-Ranbp3l and Cebpb-miR-181b-Bsnd. Four regulatory loops were identified, including Fosl2-miR-155, Fosl2-miR-146a, Cebpb-miR-155 and Mafk-miR-25. The hub genes and genes in the network showed good diagnostic value in mice and human. Conclusions In this study, we found 15 hub genes and several TF-miRNA-mRNA pathways, which are helpful for understanding the molecular and regulatory mechanisms in renal IRI. Junb-miR-223-Ranbp3l, Cebpb-miR-223-Ranbp3l, Cebpb-miR-21-Ranbp3l and Cebpb-miR-181b-Bsnd were the most important pathways, while Spp1, Fos, Timp1, Tnc, Fosl2 and Junb were the most important hub genes. Fosl2-miR-155, Fosl2-miR-146a, Cebpb-miR-155 and Mafk-miR-25 might be the negative feedback loops in renal IRI.
Collapse
Affiliation(s)
- Peng Ke
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Lin Qian
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Yi Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liu Feng
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhentao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chengjie Zheng
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Mengnan Chen
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Xinlei Huang
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaodan Wu
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Shang J, Sun S, Zhang L, Hao F, Zhang D. miR-211 alleviates ischaemia/reperfusion-induced kidney injury by targeting TGFβR2/TGF-β/SMAD3 pathway. Bioengineered 2021; 11:547-557. [PMID: 32375588 PMCID: PMC8291827 DOI: 10.1080/21655979.2020.1765501] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MicroRNA-211 (miR-211) is closely related to apoptosis and plays an important role in ischemia/reperfusion (I/R) injury. Whether miR-211 is involved in the protective effects in renal I/R injury is unknown. In this study, we evaluated the role of miR-211 in human tubular epithelial cells in response to hypoxia-reoxygenation (H/R) stimulation and I/R injury in vitro and in vivo. The results revealed that miR-211 was down-regulated and TGFβR2 was up-regulated in human kidney (HK-2) cells subjected to H/R. Luciferase reporter assay showed that TGFβR2 was a direct target of miR-211. Enforced miR-211 expression decreased H/R-induced HK-2 cell apoptosis and increased cell viability, and targeting miR-211 further increased H/R-induced HK-2 cell apoptosis and decreased cell viability. However, the effect of miR-211 was reversed by targeting TGFβR2 or enforced TGFβR2 expression in miR-211 overexpressing cells or miR-211 downexpressing cells. Moreover, we confirmed that miR-211 interacted with TGFβR2, and regulating TGF-β/SMAD3 signal. In vivo in mice, miR-211 overexpression ameliorates biochemical and histological kidney injury, reduces apoptosis in mice following I/R. On the contrary, miR-211 downexpressing promoted histological kidney injury and increased apoptosis in mice following I/R. Inhibition of miR-211 or miR-211 overexpression inhibited TGF-β/SMAD3 pathways or activated TGF-β/SMAD3 signal pathways in vitro and in vivo, which are critical for cell survival. Our findings suggested that miR-211 suppress apoptosis and relieve kidney injury following H/R or I/R via targeting TGFβR2/TGF-β/SMAD3 signals. Therefore, miR-211 may be as therapeutic potential for I/R- induced kidney injury.
Collapse
Affiliation(s)
- Jinchun Shang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shukai Sun
- Department of Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lin Zhang
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengyun Hao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dianlong Zhang
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
6
|
Han C, Jiang YH, Li W, Liu Y. Astragalus membranaceus and Salvia miltiorrhiza ameliorates cyclosporin A-induced chronic nephrotoxicity through the "gut-kidney axis". JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113768. [PMID: 33383113 DOI: 10.1016/j.jep.2020.113768] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The combination of Astragalus membranaceus and Salvia miltiorrhiza (AS) is an effective prescription that is widely used to treat chronic kidney disease (CKD) clinically in traditional Chinese medicine. Our previous studies have shown that AS can alleviate early CKD through the "gut-kidney axis", but the regulatory role of AS in the "gut-kidney axis" in the middle and late stages of CKD caused by cyclosporin A-induced chronic nephrotoxicity (CICN) has remained unclear. AIM OF THE STUDY To explore the protective effect of AS by regulating the intestinal flora to further control the miRNA-mRNA interaction profiles in CICN. MATERIALS AND METHODS Thirty-two mice were divided into four groups: Normal (N) (olive oil), Model (M) (CsA, 30 mg kg-1 d-1), AS (CsA + AS, 30 + 8.4 g kg-1 d-1) and FMT-AS (CsA + Faeces of AS group, 30 mg + 10 mL kg-1 d-1). The mice were treated for 6 weeks. Changes in renal function related metabolites were detected, pathological changes in the colon and kidney were observed, and 16S rDNA sequencing was performed on mouse faeces. In addition, miRNA and mRNA sequencing were performed on the kidney to construct differential expression (DE) profiles of the other 3 groups compared with group M. The target mRNAs among the DE miRNAs were then predicted, and an integrated analysis was performed with the DE mRNAs to annotate gene function by KEGG. DE miRNAs and DE mRNAs related to CICN in the overlapping top 20 KEGG pathways were screened and verified. RESULTS Eight metabolites that could worsen renal function were increased in group M, accompanied by thickening of the glomerular basement membrane, vacuolar degeneration of renal tubules, and proliferation of collagen fibres, while AS and FMT-AS intervention amended these changes to varying degrees. Simultaneously, intestinal permeability increased, the abundance and diversity of the flora decreased, and the ratio of Firmicum to Bacteroides (F/B) increased in group M. The AS and FMT-AS treatments reversed the flora disorder and increased probiotics producing butyric acid and lactic acid, especially Akkermansia and Lactobacillus, which might regulate the 12 overlapping top 20 KEGG pathways, such as Butanoate metabolism, Tryptophan metabolism and several RF-related pathways, leading to the remission of renal metabolism. Finally, 15 DE miRNAs and 45 DE mRNAs were screened as the therapeutic targets, and the results coincided with the sequencing results. CONCLUSION AS could alleviate renal fibrosis and metabolism caused by CICN through the "gut-kidney axis". Probiotics such as Akkermansia and Lactobacillus were the primary driving factors, and the miRNA-mRNA interaction profiles, especially Butanoate metabolism and Tryptophan metabolism, may be an important subsequent response and regulatory mechanism.
Collapse
MESH Headings
- Animals
- Astragalus propinquus/chemistry
- Butyric Acid
- Colon/drug effects
- Colon/metabolism
- Colon/microbiology
- Colon/pathology
- Cyclosporine/toxicity
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Endoplasmic Reticulum Stress/drug effects
- Fatty Acids/metabolism
- Fecal Microbiota Transplantation
- Gastrointestinal Microbiome/drug effects
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Lactic Acid
- Male
- Medicine, Chinese Traditional
- Mice, Inbred C57BL
- MicroRNAs/drug effects
- MicroRNAs/metabolism
- Oxidative Stress/drug effects
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, Cell Surface/drug effects
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/microbiology
- Renal Insufficiency, Chronic/pathology
- Salvia miltiorrhiza/chemistry
- Mice
Collapse
Affiliation(s)
- Cong Han
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yue-Hua Jiang
- Central Laboratory of Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wei Li
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Yao Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| |
Collapse
|
7
|
Zhang J, Zhang T, Tang B, Li J, Zha Z. The miR-187 induced bone reconstruction and healing in a mouse model of osteoporosis, and accelerated osteoblastic differentiation of human multipotent stromal cells by targeting BARX2. Pathol Res Pract 2021; 219:153340. [PMID: 33550149 DOI: 10.1016/j.prp.2021.153340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Multiple microRNAs (miRNAs) have been proven to regulate osteogenic differentiation by affecting the Runx2 signaling pathway. The intervention of miRNA can delay the progress of osteoporosis (OP) and induce fracture repair by affecting bone regeneration. However, the function and mechanism of miR-187 in osteoporotic fractures are still unknown. METHODS We first established the OP mouse model. Next, the BMD value was certified by iDXA. The miR-187 level in the OP mice and serum of OP patients was identified through qRT-PCR. Bone repair and bone healing were assessed through toluidine blue staining and X-ray, and BARX2 expression was also confirmed. Osteogenesis-related proteins, ALP activity, and the matrix mineralization state were evaluated by western blot, ALP staining, and Alizarin Red staining in hMSCs after transfection with miR-187 mimics, miR-187 inhibitor, or human BarH-like homeobox 2 (BARX2) siRNA. Moreover, the interplay between miR-187 and BARX2 was identified through the dual-luciferase reporter. RESULTS The BMD value was notably reduced in the OP mice, and miR-187 was markedly downregulated in the OP mice and serum of OP patients. Meanwhile, we proved that miR-187 induced bone reconstruction and healing, and downregulated BARX2 in the OP mouse model. We also proved that BARX2 was a direct target of miR-187, and could be significantly downregulated by miR-187. Furthermore, miR-187 induced osteogenic differentiation of hMSCs by targeting BARX2. CONCLUSIONS The miR-187 might have a significant therapeutic effect in osteoporotic fractures. miR-187 accelerated osteogenic differentiation of hMSCs by directly regulating BARX2.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510000, China; Department of Bone and Joint Surgery, Guizhou Orthopedics Hospital, Guiyang, Guizhou, 550001, China
| | - Tao Zhang
- Department of Bone and Joint Surgery, Guizhou Orthopedics Hospital, Guiyang, Guizhou, 550001, China
| | - Bensen Tang
- Department of Bone and Joint Surgery, Guizhou Orthopedics Hospital, Guiyang, Guizhou, 550001, China
| | - Jing Li
- Department of Bone and Joint Surgery, Guizhou Orthopedics Hospital, Guiyang, Guizhou, 550001, China
| | - Zhengang Zha
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
8
|
The Role of MicroRNA in Contrast-Induced Nephropathy: A Scoping Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4189621. [PMID: 32596306 PMCID: PMC7273422 DOI: 10.1155/2020/4189621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/18/2020] [Accepted: 04/23/2020] [Indexed: 12/03/2022]
Abstract
Objective Early diagnosis of contrast-induced nephropathy (CIN) remains crucial for successful treatment; unfortunately, the widely used serum creatinine is elevated only in the late stage of CIN. The circulating microRNAs (miRNAs) are stable biomarker that might be useful. The aim of this scoping review and meta-analysis is to assess the role of miRNAs in CIN. Methods We performed a systematic literature search on topics that assess the role of miRNAs in CIN from several electronic databases. Results There were 6 preclinical studies and 2 of them validated their findings in human. Only miR-30a, miR-30c, miR-30e, and miR-188 have been validated in human models. Meta-analysis showed that increase in miR-30a expression was associated with higher incidence of CIN (OR 4.48 [1.52, 13.26], p = 0.007; I2: 94%, p < 0.001). An increase in miR-30e expression was associated with higher incidence of CIN (OR 2.34 [1.70, 3.20], p < 0.001; I2: 0%, p = 0.76). There is an indication that miR-188 is associated with contrast-induced apoptosis and might potentially be a drug target in the future. Conclusion This study highlighted the importance of certain miRNAs in CIN pathophysiology. Future researches should explore on the prognostic and therapeutic implication of miRNA in CIN.
Collapse
|
9
|
Dai ZW, Cai KD, Xu LC, Wang LL. Perilipin2 inhibits diabetic nephropathy-induced podocyte apoptosis by activating the PPARγ signaling pathway. Mol Cell Probes 2020; 53:101584. [PMID: 32387304 DOI: 10.1016/j.mcp.2020.101584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 01/20/2023]
Abstract
Podocyte apoptosis plays a pivotal role in the pathogenesis of diabetic nephropathy (DN). The main purpose of this study was to investigate the effects of perilipin2 on high glucose (HG)-induced podocyte apoptosis and associated mechanisms. Differentially expressed genes (DEGs) in BTBR ob/ob mice vs. nondiabetic mice kidneys were obtained from GSE106841 dataset and picked out using the 'limma' package. The protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) and was visualized by Cytoscape. Perilipin2 was a hub gene using the cytoHubba plug-in from Cytoscape. Gene ontology (GO) analysis revealed that the 126 overlapping DEGs were mainly enriched in 'oxidation reduction' [biological process, (BP)], metal ion binding' [molecular function, (MF)] and 'extracellular region' [cellular component, (CC)]. KEGG pathway analysis revealed that perilipin2 was mainly involved in 'PPAR signaling pathway'. DN inhibited perilipin2 expression and PPARγ expression, as by both in vitro and in vivo studies. In vitro experiments demonstrated that perilipin2 inhibition could not only reduced PPARγ expression in podocytes, it could also promote the apoptosis, and inhibit the viability in HG treated podocytes using western blot, CCK8 and flow cytometry assays. Perilipin2 overexpression reversed the effects of HG on inhibiting podocalyxin, nephrin, precursor (pro)-caspase-3/-9 and PPARγ protein expression and increasing cleaved caspase-3/-9 protein expression. Furthermore, the functions of perilipin2 overexpression reversing HG-induced podocyte apoptosis were inhibited by PPARγ inhibitor. In conclusion, the functions of DN-induced podocyte apoptosis were inhibited by activation of the PPARγ signaling pathway caused by perilipin2 overexpression.
Collapse
Affiliation(s)
- Zhi-Wei Dai
- Department of Nephrology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China.
| | - Ke-Dan Cai
- Department of Nephrology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China
| | - Ling-Cang Xu
- Department of Nephrology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China
| | - Lai-Liang Wang
- Department of Nephrology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315010, China
| |
Collapse
|