1
|
Davis SE, Zabotka L, Desai RJ, Wang SV, Maro JC, Coughlin K, Hernández-Muñoz JJ, Stojanovic D, Shah NH, Smith JC. Use of Electronic Health Record Data for Drug Safety Signal Identification: A Scoping Review. Drug Saf 2023; 46:725-742. [PMID: 37340238 PMCID: PMC11635839 DOI: 10.1007/s40264-023-01325-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION Pharmacovigilance programs protect patient health and safety by identifying adverse event signals through postmarketing surveillance of claims data and spontaneous reports. Electronic health records (EHRs) provide new opportunities to address limitations of traditional approaches and promote discovery-oriented pharmacovigilance. METHODS To evaluate the current state of EHR-based medication safety signal identification, we conducted a scoping literature review of studies aimed at identifying safety signals from routinely collected patient-level EHR data. We extracted information on study design, EHR data elements utilized, analytic methods employed, drugs and outcomes evaluated, and key statistical and data analysis choices. RESULTS We identified 81 eligible studies. Disproportionality methods were the predominant analytic approach, followed by data mining and regression. Variability in study design makes direct comparisons difficult. Studies varied widely in terms of data, confounding adjustment, and statistical considerations. CONCLUSION Despite broad interest in utilizing EHRs for safety signal identification, current efforts fail to leverage the full breadth and depth of available data or to rigorously control for confounding. The development of best practices and application of common data models would promote the expansion of EHR-based pharmacovigilance.
Collapse
Affiliation(s)
- Sharon E Davis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave, Suite 1475, Nashville, TN, 37203, USA
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Rishi J Desai
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Shirley V Wang
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Judith C Maro
- Harvard Medical School, Boston, MA, USA
- Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | | | | | | | - Nigam H Shah
- School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Health Care, Palo Alto, CA, USA
| | - Joshua C Smith
- Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave, Suite 1475, Nashville, TN, 37203, USA.
- Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
2
|
Araki K, Matsumoto N, Togo K, Yonemoto N, Ohki E, Xu L, Hasegawa Y, Inoue H, Yamashita S, Miyazaki T. Real-world treatment response in Japanese patients with cancer using unstructured data from electronic health records. HEALTH AND TECHNOLOGY 2023. [DOI: 10.1007/s12553-023-00739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Abstract
Purpose
We generated methods for evaluating clinical outcomes including treatment response in oncology using the unstructured data from electronic health records (EHR) in Japanese language.
Methods
This retrospective analysis used medical record database and administrative data of University of Miyazaki Hospital in Japan of patients with lung/breast cancer. Treatment response (objective response [OR], stable disease [SD] or progressive disease [PD]) was adjudicated by two evaluators using clinicians’ progress notes, radiology reports and pathological reports of 15 patients with lung cancer (training data set). For assessing key terms to describe treatment response, natural language processing (NLP) rules were created from the texts identified by the evaluators and broken down by morphological analysis. The NLP rules were applied for assessing data of other 70 lung cancer and 30 breast cancer patients, who were not adjudicated, to examine if any difference in using key terms exist between these patients.
Results
A total of 2,039 records in progress notes, 131 in radiology reports and 60 in pathological reports of 15 patients, were adjudicated. Progress notes were the most common primary source data for treatment assessment (60.7%), wherein, the most common key terms with high sensitivity and specificity to describe OR were “reduction/shrink”, for SD were “(no) remarkable change/(no) aggravation)” and for PD were “(limited) effect” and “enlargement/grow”. These key terms were also found in other larger cohorts of 70 patients with lung cancer and 30 patients with breast cancer.
Conclusion
This study demonstrated that assessing response to anticancer therapy using Japanese EHRs is feasible by interpreting progress notes, radiology reports and Japanese key terms using NLP.
Collapse
|
3
|
Ng DQ, Dang E, Chen L, Nguyen MT, Nguyen MKN, Samman S, Nguyen TMT, Cadiz CL, Nguyen L, Chan A. Current and recommended practices for evaluating adverse drug events using electronic health records: A systematic review. JOURNAL OF THE AMERICAN COLLEGE OF CLINICAL PHARMACY 2021. [DOI: 10.1002/jac5.1524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ding Quan Ng
- School of Pharmacy & Pharmaceutical Sciences University of California Irvine Irvine California USA
| | - Emily Dang
- School of Pharmacy & Pharmaceutical Sciences University of California Irvine Irvine California USA
| | - Lijie Chen
- School of Pharmacy & Pharmaceutical Sciences University of California Irvine Irvine California USA
| | - Mary Thuy Nguyen
- School of Pharmacy & Pharmaceutical Sciences University of California Irvine Irvine California USA
| | - Michael Ky Nguyen Nguyen
- School of Pharmacy & Pharmaceutical Sciences University of California Irvine Irvine California USA
| | - Sarah Samman
- School of Pharmacy & Pharmaceutical Sciences University of California Irvine Irvine California USA
| | - Tiffany Mai Thy Nguyen
- School of Pharmacy & Pharmaceutical Sciences University of California Irvine Irvine California USA
| | - Christine Luu Cadiz
- School of Pharmacy & Pharmaceutical Sciences University of California Irvine Irvine California USA
| | - Lee Nguyen
- School of Pharmacy & Pharmaceutical Sciences University of California Irvine Irvine California USA
| | - Alexandre Chan
- School of Pharmacy & Pharmaceutical Sciences University of California Irvine Irvine California USA
| |
Collapse
|