1
|
Hua Z, Liu N, Yan X. Research progress on the pharmacological activity, biosynthetic pathways, and biosynthesis of crocins. Beilstein J Org Chem 2024; 20:741-752. [PMID: 38633914 PMCID: PMC11022409 DOI: 10.3762/bjoc.20.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Crocins are water-soluble apocarotenoids isolated from the flowers of crocus and gardenia. They exhibit various pharmacological effects, including neuroprotection, anti-inflammatory properties, hepatorenal protection, and anticancer activity. They are often used as coloring and seasoning agents. Due to the limited content of crocins in plants and the high cost of chemical synthesis, the supply of crocins is insufficient to meet current demand. The biosynthetic pathways for crocins have been elucidated to date, which allows the heterologous production of these valuable compounds in microorganisms by fermentation. This review article provides a comprehensive overview of the chemistry, pharmacological activity, biosynthetic pathways, and heterologous production of crocins, aiming to lay the foundation for the large-scale production of these valuable natural products by using engineered microbial cell factories.
Collapse
Affiliation(s)
- Zhongwei Hua
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Nan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
2
|
Madhukar G, Subbarao N. Potential inhibitors of RPS6KB2 and NRF2 in head and neck squamous cell carcinoma. J Biomol Struct Dyn 2024; 42:1875-1900. [PMID: 37160694 DOI: 10.1080/07391102.2023.2205946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
Among the major altered pathways in head and neck squamous cell carcinoma, AKT/mTORC1/S6K and NRF2/KEAP1 pathway are quite significant. The overexpression and overstimulation of proteins from both these pathways makes them the promising candidates in cancer therapeutics. Inhibiting mTOR has been in research from past several decades but the tumour heterogeneity, and upregulation of several compensatory feed-back mechanisms, encourages to explore other downstream targets for inhibiting the pathway. One such downstream effectors of mTOR is S6K2. It is reported to be overexpressed in cancers such as head and neck cancer, breast cancer and prostate cancer. In case of NRF2/KEAP1 pathway, nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2) is overexpressed in ∼90% of head and neck squamous cell carcinoma (HNSCC) cases. It associates with poor survival rate and therapeutic resistance in HNSCC treatment. NRF2 pathway is the primary antioxidant pathway in the cell which also serves pro-tumorigenic functions, such as repression of apoptosis, cell proliferation support and chemoresistance. The aim of this work was to explore S6K2 and NRF2 and identify novel and potential inhibitors against them for treating head and neck squamous cell carcinoma. Since the crystal structure of S6K2 was not available at the time of this study, we modelled its structure using homology modelling and performed high throughput screening, molecular dynamics simulations, free energy calculations and protein-ligand interaction studies to identify the inhibitors. We identified natural compounds Crocin and Gypenoside XVII against S6K2 and Chebulinic acid and Sennoside A against NRF2. This study provides a significant in-depth understanding of the two studied pathways and therefore can be used in the development of potential therapeutics against HNSCC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Geet Madhukar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Yousef DM, Hassan HA, Nafea OE, El Fattah ERA. Crocin averts functional and structural rat hepatic disturbances induced by copper oxide nanoparticles. Toxicol Res (Camb) 2022; 11:911-919. [PMID: 36569481 PMCID: PMC9773068 DOI: 10.1093/toxres/tfac064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022] Open
Abstract
Background Exposure to nanoparticles became inevitable in our daily life due to their huge industrial uses. Copper oxide nanoparticles (CuONPs) are one of the most frequently utilized metal nanoparticles in numerous applications. Crocin (CRO) is a major active constituent in saffron having anti-inflammatory and antioxidant potentials. Objectives We designed this study to explore the probable defensive role of CRO against CuONPs-induced rat hepatic damage. Materials and methods Therefore, 24 adult rats were randomly distributed into 4 equal groups as negative control, CRO, CuONPs, and co-treated CuONPs with CRO groups. All treatments were administered for 14 days. The hepatotoxic effect of CuONPs was evaluated by estimation of hepatic alanine aminotransferase and aspartate aminotransferase enzymes, hepatic oxidative malondialdehyde and antioxidant glutathione reduced, serum levels of inflammatory biomarkers (tumor necrosis factor-alpha, interleukin-1-beta, and nuclear factor kappa B), and expression of the apoptotic BAX in hepatic tissues; in addition, histopathological examination of the hepatic tissues was conducted. Results We found that concurrent CRO supplement to CuONPs-treated rats significantly averted functional and structural rat hepatic damage as documented by decreased hepatic enzymes activities, restored hepatic oxidant/antioxidant balance, decreased serum levels of inflammatory biomarkers, reversed BAX-mediated apoptotic cell death in hepatic tissues along with repair of CuONPs-induced massive hepatic structural and ultrastructural alterations. Conclusions It is concluded that combined CRO supplement to CuONPs-treated rats improved hepatic function and structure by, at least in part, antioxidant, anti-inflammatory, and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Doaa Mohammed Yousef
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Heba Ahmed Hassan
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ola Elsayed Nafea
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | |
Collapse
|
4
|
Abdu S, Juaid N, Amin A, Moulay M, Miled N. Therapeutic Effects of Crocin Alone or in Combination with Sorafenib against Hepatocellular Carcinoma: In Vivo & In Vitro Insights. Antioxidants (Basel) 2022; 11:antiox11091645. [PMID: 36139719 PMCID: PMC9495549 DOI: 10.3390/antiox11091645] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
This study investigated the therapeutic effects of the phytochemical crocin alone or in combination with sorafenib both in rats chemically induced with hepatocellular carcinoma (HCC) and in human liver cancer cell line (HepG2). Male rats were randomly divided into five groups, namely, control group, HCC induced group, and groups treated with sorafenib, crocin or both crocin and sorafenib. HCC was induced in rats with a single intraperitoneal injection of diethylnitrosamine (DEN), then 2-acetylaminofluorene (2-AAF). The HCC-induced rats showed a significant decrease in body weight compared to animals treated with either or both examined drugs. Serum inflammatory markers (C-reactive protein (CRP); interleukin-6 (IL-6); lactate dehydrogenase (LDH), and oxidative stress markers were significantly increased in the HCC group and were restored upon treatment with either or both of therapeutic molecules. Morphologically, the HCC-induced rats manifested most histopathological features of liver cancer. Treatment with either or both of crocin and sorafenib successfully restored normal liver architecture. The expression of key genes involved in carcinogenesis (TNFα, p53, VEGF and NF-κB) was highly augmented upon HCC induction and was attenuated post-treatment with either or both examined drugs. Treatment with both crocin and sorafenib improved the histopathological and inflammation parameters as compared to single treatments. The in vivo anti-cancer effects of crocin and/or sorafenib were supported by their respective cytotoxicity on HepG2 cells. Crocin and sorafenib displayed an anti-tumor synergetic effect on HepG2 cells. The present findings demonstrated that a treatment regimen with crocin and sorafenib reduced liver toxicity, impeded HCC development, and improved the liver functions.
Collapse
Affiliation(s)
- Suzan Abdu
- Department of Biological Sciences, University of Jeddah, Jeddah 23445, Saudi Arabia
| | - Nouf Juaid
- Department of Biological Sciences, University of Jeddah, Jeddah 23445, Saudi Arabia
- Correspondence: (N.J.); (N.M.)
| | - Amr Amin
- Biology Department, UAE University, Al Ain 15551, United Arab Emirates
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Mohamed Moulay
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdul Aziz University, Jeddah 22252, Saudi Arabia
| | - Nabil Miled
- Department of Biological Sciences, University of Jeddah, Jeddah 23445, Saudi Arabia
- Functional Genomics and Plant Physiology Research Unit, Higher Institute of Biotechnology Sfax, University of Sfax, BP261 Road Soukra Km4, Sfax 3038, Tunisia
- Correspondence: (N.J.); (N.M.)
| |
Collapse
|
5
|
Liang W, Greven J, Fragoulis A, Horst K, Bläsius F, Wruck C, Pufe T, Kobbe P, Hildebrand F, Lichte P. Sulforaphane-Dependent Up-Regulation of NRF2 Activity Alleviates Both Systemic Inflammatory Response and Lung Injury After Hemorrhagic Shock/Resuscitation in Mice. Shock 2022; 57:221-229. [PMID: 34559743 DOI: 10.1097/shk.0000000000001859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Hemorrhagic shock/resuscitation (HS/R) is closely associated with overwhelming oxidative stress and systemic inflammation. As an effective activator of the nuclear factor-erythroid factor 2 related factor 2 (Nrf2) pathway, sulforaphane (SFN) exerts antioxidant and anti-inflammatory effects. We explored SFN's effects on alveolar macrophages (AMs), systemic inflammation, and pulmonary damage in an isolated murine HS/R model. Male C57/BL6 wild type and transgenic antioxidant response element (ARE)-luciferase (luc) mice (both n = 6 per group) were exposed to either pressure-controlled HS/R (mean arterial pressure 35-45 mm Hg for 90 min) or sham procedure (surgery without HS/R) or were sacrificed without intervention (control group). Fluid resuscitation was performed via the reinfusion of withdrawn blood and 0.9% saline. Sulforaphane or 0.9% saline (vehicle) was administrated intraperitoneally. Mice were sacrificed 6, 24, or 72 h after resuscitation. Bioluminescence imaging of ARE-luc mice was conducted to measure pulmonary Nrf2 activity. Plasma was collected to determine systemic cytokine levels. Alveolar macrophages were isolated before measuring cytokines in the supernatant and performing immunofluorescence staining, as well as Western blot for intracellular Nrf2. Histological damage was assessed via the acute lung injury score and wet/dry ratio.Hemorrhagic shock/resuscitation was associated with pulmonary Nrf2 activation. Sulforaphane enhanced pulmonary Nrf2 activity and the Nrf2 activation of AM, while it decreased lung damage. Sulforaphane exerted down-regulatory effects on AM-generated and systemic pro-inflammatory mediators, while it did not have such effects on IL-10.In conclusion, SFN beneficially enhances pulmonary Nrf2 activity and promotes Nrf2 accumulation in AMs' nuclei. This may exert not only local protective effects but also systemic effects via the down-regulation of pro-inflammatory cytokines. The administration of Nrf2 activator post-HS/R may represent an innovative treatment strategy.
Collapse
Affiliation(s)
- Weiqiang Liang
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan City, Shandong Province, PR China
| | - Johannes Greven
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Klemens Horst
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Felix Bläsius
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Wruck
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Philipp Kobbe
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Philipp Lichte
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|