1
|
Chakraborty S, Saha R, Saha S. A critical review on graphene and graphene-based derivatives from natural sources emphasizing on CO 2 adsorption potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67633-67663. [PMID: 37779125 DOI: 10.1007/s11356-023-30093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Accelerated release of carbon dioxide (CO2) into the atmosphere has become a critical environmental issue, and therefore, efficient methods for capturing CO2 are in high demand. Graphene and graphene-based derivatives have demonstrated promising potential as adsorbents due to their unique properties. This review aims to provide an overview of the latest research on graphene and its derivatives fabricated from natural sources which have been utilized and may be explored for CO2 adsorption. The necessity of this review lies in the need to explore alternative, sustainable sources of graphene that can contribute to the development of viable environmentally benign CO2 capture technologies. The review will aim to highlight graphene as an excellent CO2 adsorbent and the possible avenues, advantages, and limitations of the processes involved in fabricating graphene and its derivatives sourced from both industrial resources and organic waste-based naturally occurring carbon precursors for CO2 adsorption. This review will also highlight the CO2 adsorption mechanisms focusing on density functional theory (DFT) and molecular dynamics (MD)-based studies over the last decade.
Collapse
Affiliation(s)
- Saswata Chakraborty
- Chemical Engineering Department, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Ranadip Saha
- Chemical Engineering Department, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Sudeshna Saha
- Chemical Engineering Department, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
2
|
Sarker M, Dobner C, Zahl P, Fiankor C, Zhang J, Saxena A, Aluru N, Enders A, Sinitskii A. Porous Nanographenes, Graphene Nanoribbons, and Nanoporous Graphene Selectively Synthesized from the Same Molecular Precursor. J Am Chem Soc 2024; 146:14453-14467. [PMID: 38747845 DOI: 10.1021/jacs.3c10842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We demonstrate a family of molecular precursors based on 7,10-dibromo-triphenylenes that can selectively produce different varieties of atomically precise porous graphene nanomaterials through the use of different synthetic environments. Upon Yamamoto polymerization of these molecules in solution, the free rotations of the triphenylene units around the C-C bonds result in the formation of cyclotrimers in high yields. In contrast, in on-surface polymerization of the same molecules on Au(111) these rotations are impeded, and the coupling proceeds toward the formation of long polymer chains. These chains can then be converted to porous graphene nanoribbons (pGNRs) by annealing. Correspondingly, the solution-synthesized cyclotrimers can also be deposited onto Au(111) and converted into porous nanographenes (pNGs) via thermal treatment. Thus, both processes start with the same molecular precursor and end with a porous graphene nanomaterial on Au(111), but the type of product, pNG or pGNR, depends on the specific coupling approach. We also produced extended nanoporous graphenes (NPGs) through the lateral fusion of highly aligned pGNRs on Au(111) that were grown at high coverage. The pNGs can also be synthesized directly in solution by Scholl oxidative cyclodehydrogenation of cyclotrimers. We demonstrate the generality of this approach by synthesizing two varieties of 7,10-dibromo-triphenylenes that selectively produced six nanoporous products with different dimensionalities. The basic 7,10-dibromo-triphenylene monomer is amenable to structural modifications, potentially providing access to many new porous graphene nanomaterials. We show that by constructing different porous structures from the same building blocks, it is possible to tune the energy band gap in a wide range.
Collapse
Affiliation(s)
- Mamun Sarker
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, Nebraska 68588, United States
| | - Christoph Dobner
- Physikalisches Institut, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Percy Zahl
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Christian Fiankor
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, Nebraska 68588, United States
| | - Jian Zhang
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, Nebraska 68588, United States
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Anshul Saxena
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Narayana Aluru
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Axel Enders
- Physikalisches Institut, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Alexander Sinitskii
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, Nebraska 68588, United States
- Nebraska Center for Materials and Nanoscience, University of Nebraska - Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
3
|
Ghasemi F, Alizadeh M, Azamat J, Erfan-Niya H. Understanding the performance of RHO type zeolite membrane for CH 4/N 2 separation based on molecular dynamics and deep neural network methods. J Mol Graph Model 2024; 127:108673. [PMID: 37992551 DOI: 10.1016/j.jmgm.2023.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
This study shows a molecular dynamics (MD) simulation study on the performance of the RHO zeolite membrane for separating nitrogen from methane/nitrogen gas mixtures. The contamination of natural gas, predominantly composed of methane, with nitrogen diminishes its value. Zeolite membranes offer promising prospects for gas separation due to their stability, rigid pore structure, and molecular sieving properties. The study investigates the impact of pressure difference (up to 30 MPa), feed composition, and membrane thickness on the separation rate at a system temperature of 298 K. Results demonstrate that the RHO zeolite membrane exhibits high permeability and selectivity for N2 separation, surpassing the upper limit defined by Robson with a maximum permeability of 2.14 × 105 GPU (Gas Permeation Units). Exceptional selectivity of N2 over CH4 molecules is observed. Additionally, altering the feed composition and membrane thickness positively influences the membrane's separation performance, thereby enhancing its efficiency. The findings contribute to the advancement of separation technologies, providing valuable insights into the potential application of zeolite membranes for efficient N2 separation from CH4/N2 gas mixtures in natural gas processing. Furthermore, the study explores the use of Deep Neural Network (DNN) models to predict the membrane's performance under diverse operating conditions. The DNN models, trained using simulation data from MD simulations, exhibit high accuracy with a coefficient of determination (R2) exceeding 0.9, ensuring reliable predictions. The integration of DNN models facilitates the optimization of zeolite membrane-based gas separation systems, improving their design and operation.
Collapse
Affiliation(s)
- Fatemeh Ghasemi
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Mahdi Alizadeh
- Department of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Jafar Azamat
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
4
|
Mei B, Jasim DJ, Alizadeh A, Hekmatifar M, Nasajpour-Esfahani N, Salahshour S, Sabetvand R, Toghraie D. The effect of the initial temperature, pressure, and shape of carbon nanopores on the separation process of SiO 2 molecules from water vapor by molecular dynamics simulation. CHEMOSPHERE 2024; 349:140966. [PMID: 38109972 DOI: 10.1016/j.chemosphere.2023.140966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Today, with the advancement of science in nanotechnology, it is possible to remove dust nanostructures from the air breathed by humans or other fluids. In the present study, the separation of SiO2 molecules from H2O vapor is studied using molecular dynamics (MD) simulation. This research studied the effect of initial temperature, nanopore geometry, and initial pressure on the separation of SiO2 molecules. The obtained results show that by increasing the temperature to 500 K, the maximum velocity (Max-Vel) of the samples reached 2.47 Å/fs. Regarding the increasing velocity of particles, more particles pass via the nanopores. Moreover, the shape of the nanopore could affect the number of passing particles. The results show that in the samples with a cylindrical nanopore, 20 and 40% of SiO2 molecules, and with the sphere cavity, about 32 and 38% of SiO2 particles passed in the simulated structure. So, it can be concluded that the performance of carbon nanosheets with a cylindrical pore and 450 K was more optimal. Also, the results show that an increase in initial pressure leads to a decrease in the passage of SiO2 particles. The results reveal that about 14 and 54% of Silica particles passed via the carbon membrane with increasing pressure. Therefore, for use in industry, in terms of separating dust particles, in addition to applying an EF, temperature, nanopore geometry, and initial pressure should be controlled.
Collapse
Affiliation(s)
- Bing Mei
- College of Construction Engineering, Yunnan Agricultural University, Kunming, Yunnan, 650000, China.
| | - Dheyaa J Jasim
- Department of Petroleum Engineering, Al-Amarah University College, Maysan, Iraq
| | - As'ad Alizadeh
- Department of Civil Engineering, College of Engineering, Cihan University-Erbil, Erbil, Iraq
| | - Maboud Hekmatifar
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| | - Navid Nasajpour-Esfahani
- Department of Material Science and Engineering, Georgia Institute of Technology, Atlanta, 30332, USA
| | - Soheil Salahshour
- Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey; Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Roozbeh Sabetvand
- Department of Energy Engineering and Physics, Faculty of Condensed Matter Physics, Amirkabir University of Technology, Tehran, Iran
| | - D Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran.
| |
Collapse
|
5
|
Pakdel S, Erfan-Niya H, Azamat J, Hasanzadeh A. Highly efficient helium purification through a dual-membrane system: insights from molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:30572-30582. [PMID: 37929921 DOI: 10.1039/d3cp04797k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Almost all helium is resourced from natural gas reservoirs. Hence, it is essential to develop new efficient technologies to recover helium from natural gas. In this work, we propose a novel dual membrane system, consisting of C2N (M1) and graphdiyne (M2) membranes, to separate and purify helium from a ternary gas mixture of He/N2/CH4. In this regard, we performed molecular dynamics (MD) simulations to investigate the separation performance of the proposed system. Here, we explored the effect of applied pressure (up to 2 MPa) and the feed composition on the separation performance. The simulation results revealed that in the designed system, the M1 membrane allows He and N2 to diffuse through and prevents CH4 from crossing even at an applied pressure gradient. Next, the M2 membrane only allows He to transfer through and prevents N2 from crossing even at the applied pressure gradient. As a result, the dual membrane system showed a high He permeance of 2.5 × 106 GPU and ultrahigh He selectivity. In addition, the suggested dual membrane system could separate three components simultaneously at the applied pressure of 2 MPa, which implies the outstanding performance of the system. We also analyzed the density map, the van der Waals interactions, and the potential of the mean force calculations to better understand the permeation of gas species across the designed system.
Collapse
Affiliation(s)
- Siamak Pakdel
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| | - Jafar Azamat
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran
| | - Amir Hasanzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
6
|
Mert H, Deniz CU, Baykasoglu C. Adsorptive separation of CH 4, H 2, CO 2, and N 2 using fullerene pillared graphene nanocomposites: Insights from molecular simulations. J Mol Model 2023; 29:315. [PMID: 37707601 DOI: 10.1007/s00894-023-05715-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
CONTEXT The adsorptive separation performances of fullerene pillared graphene nanocomposites (FPGNs) with tunable micro and meso porous morphology are investigated for the binary mixtures of CH4, H2, CO2 and N2 by using grand canonical Monte Carlo (GCMC) simulations. Different fullerene types are considered in designs as pillar to investigate the effects of porosity on the gas separation performances of FPGNs, and the GCMC simulations are performed for an equimolar binary mixture of CO2/H2, CO2/CH4, CO2/N2 and CH4/H2 inspired by industrial gas mixtures. It is found that CO2/N2, CO2/H2 and CH4/H2 selectivity of FPGNs are about 72, 410 and 145 at 298 K and 1 bar, which are higher than those for several adsorbent materials reported. METHODS Five different FPGN models which contain covalently bonded periodical fullerene and graphene units were constructed using C60, C180, C320, C540 and C720 fullerenes, followed by geometry optimization using Open Babel. All GCMC simulations of adsorption were performed in the RASPA. The adsorption isotherms of FPGNs for pure gases are comparatively examined, and their performances are discussed based on the pore structure and isosteric heat of adsorption. Then, the separation factors of FPGNs for equimolar binary mixtures of these gases are elucidated from the difference in the heat of adsorption and the adsorption selectivity.
Collapse
Affiliation(s)
- Humeyra Mert
- Faculty of Engineering, Department of Polymer Materials Engineering, Hitit University, Çorum, Türkiye
| | - Celal Utku Deniz
- Faculty of Engineering, Department of Chemical Engineering, Hitit University, Cevre Yolu Avenue, 19030, Çorum, Türkiye.
| | - Cengiz Baykasoglu
- Faculty of Engineering, Department of Mechanical Engineering, Hitit University, Cevre Yolu Avenue, 19030, Çorum, Türkiye.
| |
Collapse
|
7
|
Liu Z, Li X, Shi D, Guo F, Zhao G, Hei Y, Xiao Y, Zhang X, Peng YL, Sun W. Superior Selective CO 2 Adsorption and Separation over N 2 and CH 4 of Porous Carbon Nitride Nanosheets: Insights from GCMC and DFT Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6613-6622. [PMID: 37098239 DOI: 10.1021/acs.langmuir.3c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Development of high-performance materials for the capture and separation of CO2 from the gas mixture is significant to alleviate carbon emission and mitigate the greenhouse effect. In this work, a novel structure of C9N7 slit was developed to explore its CO2 adsorption capacity and selectivity using Grand Canonical Monte Carlo (GCMC) and Density Functional Theory (DFT) calculations. Among varying slit widths, C9N7 with the slit width of 0.7 nm exhibited remarkable CO2 uptake with superior CO2/N2 and CO2/CH4 selectivity. At 1 bar and 298 K, a maximum CO2 adsorption capacity can be obtained as high as 7.06 mmol/g, and the selectivity of CO2/N2 and CO2/CH4 was 41.43 and 18.67, respectively. In the presence of H2O, the CO2 uptake of C9N7 slit decreased slightly as the water content increased, showing better water tolerance. Furthermore, the underlying mechanism of highly selective CO2 adsorption and separation on the C9N7 surface was revealed. The closer the adsorption distance, the stronger the interaction energy between the gas molecule and the C9N7 surface. The strong interaction between the C9N7 nanosheet and the CO2 molecule contributes to its impressive CO2 uptake and selectivity performance, suggesting that the C9N7 slit could be a promising candidate for CO2 capture and separation.
Collapse
Affiliation(s)
- Zilong Liu
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Xue Li
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Di Shi
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Fengzhi Guo
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Ge Zhao
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yanxiao Hei
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yufei Xiao
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiao Zhang
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Yun Lei Peng
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Weichao Sun
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Lyngby 2800 Kgs, Denmark
| |
Collapse
|
8
|
Patil D, Gupta T. Realizing high performance gas filters through nano-particle deposition. Phys Chem Chem Phys 2023; 25:9300-9310. [PMID: 36920157 DOI: 10.1039/d2cp03825k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
We have studied the separation of a mixture of hydrogen and methane in equal proportions, using a thin film comprised of 10 layers of nanoparticles deposited layer-wise using our "two-point sticking algorithm" which simulates controlled agglomeration of such nanoparticles. We simulate the process of gas separation using LAMMPS. We have studied the scenario where nanoparticles act like hard spheres, maintaining their shape and size, similar to what has been demonstrated by experiments involving self-assembled nanoparticle thin films. We consider the pressure dependence of the results by working at 3 different initial pressures, 0.1 × P0, 0.5 × P0 and P0, where P0 is the atmospheric pressure. Three different diameters of the nanoparticles, namely 3 nm, 6 nm and 9 nm, are considered, and therefore the overall thickness of the membranes considered ranges from 30 nm to 90 nm. We obtained perm-selectivity values that are significantly higher than the Robeson line for hydrogen-methane gas separation, indicating the novelty and therefore the significant applications of this work. We find that while the permeance of hydrogen remains more or less steady with a ten-fold increase of pressure, the corresponding fall in methane's permeance is very sharp. The fall in methane's permeance with increasing pressure is more pronounced the smaller the nanoparticles of the membrane being used. This results in an even higher selectivity at higher pressure for smaller nanoparticle based membranes.
Collapse
Affiliation(s)
- Dhruva Patil
- Department of Mechanical Engineering, R. V. College of Engineering, Bangalore, 560059, India
| | - Tribikram Gupta
- Department of Physics, R. V. College of Engineering, Bangalore, 560059, India.
| |
Collapse
|
9
|
Kausar A. Nanoporous graphene in polymeric nanocomposite membranes for gas separation and water purification—standings and headways. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2177170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Ayesha Kausar
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad, Pakistan
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West, South Africa
| |
Collapse
|
10
|
|
11
|
Yuan Z, He G, Li SX, Misra RP, Strano MS, Blankschtein D. Gas Separations using Nanoporous Atomically Thin Membranes: Recent Theoretical, Simulation, and Experimental Advances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201472. [PMID: 35389537 DOI: 10.1002/adma.202201472] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Porous graphene and other atomically thin 2D materials are regarded as highly promising membrane materials for high-performance gas separations due to their atomic thickness, large-scale synthesizability, excellent mechanical strength, and chemical stability. When these atomically thin materials contain a high areal density of gas-sieving nanoscale pores, they can exhibit both high gas permeances and high selectivities, which is beneficial for reducing the cost of gas-separation processes. Here, recent modeling and experimental advances in nanoporous atomically thin membranes for gas separations is discussed. The major challenges involved, including controlling pore size distributions, scaling up the membrane area, and matching theory with experimental results, are also highlighted. Finally, important future directions are proposed for real gas-separation applications of nanoporous atomically thin membranes.
Collapse
Affiliation(s)
- Zhe Yuan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Guangwei He
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sylvia Xin Li
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
12
|
Zhang S, Shen L, Deng H, Liu Q, You X, Yuan J, Jiang Z, Zhang S. Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108457. [PMID: 35238090 DOI: 10.1002/adma.202108457] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Ultrathin membranes are at the forefront of membrane research, offering great opportunities in revolutionizing separations with ultrafast transport. Driven by advanced nanomaterials and manufacturing technology, tremendous progresses are made over the last 15 years in the fabrications and applications of sub-50 nm membranes. Here, an overview of state-of-the-art ultrathin membranes is first introduced, followed by a summary of the fabrication techniques with an emphasis on how to realize such extremely low thickness. Then, different types of ultrathin membranes, categorized based on their structures, that is, network, laminar, or framework structures, are discussed with a focus on the interplays among structure, fabrication methods, and separation performances. Recent research and development trends are highlighted. Meanwhile, the performances and applications of current ultrathin membranes for representative separations (gas separation and liquid separation) are thoroughly analyzed and compared. Last, the challenges in material design, structure construction, and coordination are given, in order to fully realize the potential of ultrathin membranes and facilitate the translation from scientific achievements to industrial productions.
Collapse
Affiliation(s)
- Shiyu Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liang Shen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Deng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qinze Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xinda You
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Sui Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
13
|
Mohammadzadeh M, Pakdel S, Azamat J, Erfan-Niya H, Khataee A. Theoretical Study of CO 2/N 2 Gas Mixture Separation through a High-Silica PWN-type Zeolite Membrane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mina Mohammadzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Siamak Pakdel
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Jafar Azamat
- Department of Basic Sciences, Farhangian University, 19989-63341 Tehran, Iran
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| |
Collapse
|
14
|
Negaresh Z, Fazli M, Majid Hashemianzadeh S. H-passivated nanoporous graphene membranes for CO2/N2 separation: A reactive molecular dynamic simulation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Vivas VH, Flores MC, Jesus WP, Ferlauto AS, Cunha THR, Figueiredo KC. Chemical vapor deposition graphene transfer onto asymmetric
PMMA
support. J Appl Polym Sci 2022. [DOI: 10.1002/app.51590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Marcelo Costa Flores
- Department of Chemical Engineering Federal University of Minas Gerais Belo Horizonte Brazil
| | | | - André Santarosa Ferlauto
- Engineering, Modeling and Applied Social Sciences Center Federal University of ABC Santo André Brazil
| | | | | |
Collapse
|
16
|
Liu Z, Li X, He W, Zhao G, Yang Y, Liu X, Zhang X, Li X, Zhang S, Sun W, Lu G. Synergistic effect of charge and strain engineering on porous g-C9N7 nanosheets for highly controllable CO2 capture and separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Jana A, Bergsman DS, Grossman JC. Adsorption-based membranes for air separation using transition metal oxides. NANOSCALE ADVANCES 2021; 3:4502-4512. [PMID: 36133475 PMCID: PMC9418459 DOI: 10.1039/d1na00307k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/25/2021] [Indexed: 06/16/2023]
Abstract
In this work, we use computational modeling to examine the viability of adsorption-based pore-flow membranes for separating gases when a purely size-based separation strategy is ineffective. Using molecular dynamics simulations of O2 and N2, we model permeation through a nanoporous graphene membrane. Permeation is assumed to follow a five-step adsorption-based pathway, with desorption being the rate-limiting step. Using this model, we observe increased selectivity between O2 and N2, resulting from increased adsorption energy differences. We explore the limits of this strategy, providing an initial set of constraints that need to be satisfied to allow for selectivity. Finally, we provide a preliminary exploration of some transition metal oxides that appear to satisfy those conditions. Using density functional theory calculations, we confirm that these oxides possess adsorption energies needed to operate as adsorption-based pore-flow membranes. These adsorption energies provide a suitable motivation to examine adsorption-based pore-flow membranes as a viable option for air separation.
Collapse
Affiliation(s)
- Asmita Jana
- Department of Materials Science and Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - David S Bergsman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| |
Collapse
|
18
|
Dhara S, Jawa H, Ghosh S, Varghese A, Karmakar D, Lodha S. All-Electrical High-Sensitivity, Low-Power Dual-Mode Gas Sensing and Recovery with a WSe 2/MoS 2 pn Heterodiode. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30785-30796. [PMID: 34180230 DOI: 10.1021/acsami.1c01806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional MoS2 gas sensors have conventionally relied on a change in field-effect-transistor (FET) channel resistance or in the Schottky contact/pn homojunction barrier. We demonstrate an enhancement in sensitivity (6×) and dynamic response along with a reduction in detection limit (8×) and power (104×) in a gate-tunable type-II WSe2(p)/MoS2(n) heterodiode gas sensor over an MoS2 FET on the same flake. Measurements for varying NO2 concentration, gate bias, and MoS2 flake thickness, reinforced with first-principles calculations, indicate dual-mode operation due to (i) a series resistance-based exponential change in the high-bias thermionic current (high sensitivity), and (ii) a heterointerface carrier concentration-based linear change in near-zero-bias interlayer recombination current (low power) resulting in sub-100 μW/cm2 power consumption. Fast and gate-bias tunable recovery enables an all-electrical, room-temperature dynamic operation. Coupled with the sensing of trinitrotoluene (TNT) molecules down to 80 ppb, this study highlights the potential of the WSe2/MoS2 pn heterojunction as a simple, low-overhead, and versatile chemical-sensing platform.
Collapse
Affiliation(s)
- Sushovan Dhara
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Himani Jawa
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sayantan Ghosh
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Abin Varghese
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- IITB-Monash Research Academy, IIT Bombay, Mumbai 400076, India
| | | | - Saurabh Lodha
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
19
|
Bondaz L, Chow CM, Karnik R. Rapid screening of nanopore candidates in nanoporous single-layer graphene for selective separations using molecular visualization and interatomic potentials. J Chem Phys 2021; 154:184111. [PMID: 34241041 DOI: 10.1063/5.0044041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nanoporous single-layer graphene is promising as an ideal membrane because of its extreme thinness, chemical resistance, and mechanical strength, provided that selective nanopores are successfully incorporated. However, screening and understanding the transport characteristics of the large number of possible pores in graphene are limited by the high computational requirements of molecular dynamics (MD) simulations and the difficulty in experimentally characterizing pores of known structures. MD simulations cannot readily simulate the large number of pores that are encountered in actual membranes to predict transport, and given the huge variety of possible pores, it is hard to narrow down which pores to simulate. Here, we report alternative routes to rapidly screen molecules and nanopores with negligible computational requirement to shortlist selective nanopore candidates. Through the 3D representation and visualization of the pores' and molecules' atoms with their van der Waals radii using open-source software, we could identify suitable C-passivated nanopores for both gas- and liquid-phase separation while accounting for the pore and molecule shapes. The method was validated by simulations reported in the literature and was applied to study the mass transport behavior across a given distribution of nanopores. We also designed a second method that accounts for Lennard-Jones and electrostatic interactions between atoms to screen selective non-C-passivated nanopores for gas separations. Overall, these visualization methods can reduce the computational requirements for pore screening and speed up selective pore identification for subsequent detailed MD simulations and guide the experimental design and interpretation of transport measurements in nanoporous atomically thin membranes.
Collapse
Affiliation(s)
- Luc Bondaz
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Chun-Man Chow
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
20
|
Efficient CH4/CO2 Gas Mixture Separation through Nanoporous Graphene Membrane Designs. ENERGIES 2021. [DOI: 10.3390/en14092488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nanoporous graphene membranes have drawn special attention in the gas-separation processes due to their unique structure and properties. The complexity of the physical understanding of such membrane designs restricts their widespread use for gas-separation applications. In the present study, we strive to propose promising designs to face this technical challenge. In this regard, we investigated the permeation and separation of the mixture of adsorptive gases CO2 and CH4 through a two-stage bilayer sub-nanometer porous graphene membrane design using molecular dynamics simulation. A CH4/CO2 gashouse mixture with 80 mol% CH4 composition was generated using the benchmarked force-fields and was forced to cross through the porous graphene membrane design by a constant piston velocity. Three chambers are considered to be feeding, transferring, and capturing to examine the permeation and separation of molecules under the effect of the two-stage membrane. The main objective is to investigate the multistage membrane and bilayer effect simultaneously. The permeation and separation of the CO2 and CH4 molecules while crossing through the membrane are significantly influenced by the pore offset distance (W) and the interlayer spacing (H) of the bilayer nanoporous graphene membrane. Linear configurations (W = 0 Å) and those with the offset distance of 10 Å and 20 Å were examined by varying the interlayer spacing between 8 Å, 12 Å, and 16 Å. The inline configuration with an interlayer spacing of 12 Å is the most effective design among the examined configurations in terms of optimum separation performance and high CO2 and CH4 permeability. Furthermore, increasing the interlayer distance to 16 Å results in bulk-like behavior rather than membrane-like behavior, indicating the optimum parameters for high selectivity and permeation. Our findings present an appropriate design for the effective separation of CH4/CO2 gas mixtures by testing novel nanoporous graphene configurations.
Collapse
|
21
|
Huang S, Li S, Villalobos LF, Dakhchoune M, Micari M, Babu DJ, Vahdat MT, Mensi M, Oveisi E, Agrawal KV. Millisecond lattice gasification for high-density CO 2- and O 2-sieving nanopores in single-layer graphene. SCIENCE ADVANCES 2021; 7:7/9/eabf0116. [PMID: 33627433 PMCID: PMC7904253 DOI: 10.1126/sciadv.abf0116] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/12/2021] [Indexed: 05/31/2023]
Abstract
Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2 However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm-2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.
Collapse
Affiliation(s)
- Shiqi Huang
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Shaoxian Li
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Luis Francisco Villalobos
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Mostapha Dakhchoune
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Marina Micari
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Deepu J Babu
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Mohammad Tohidi Vahdat
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Mounir Mensi
- Institut des Sciences et Ingénierie Chimiques (ISIC), EPFL, 1950 Sion, Switzerland
| | - Emad Oveisi
- Interdisciplinary Centre for Electron Microscopy (CIME), EPFL, 1015 Lausanne, Switzerland
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland.
| |
Collapse
|
22
|
Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-020-2016-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Role of pore geometry in gas separation using nanoporous graphene – A study in contrast between equilibrium and non-equilibrium cases. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Rezaee P, Naeij HR. A new approach to separate hydrogen from carbon dioxide using graphdiyne-like membrane. Sci Rep 2020; 10:13549. [PMID: 32782345 PMCID: PMC7419318 DOI: 10.1038/s41598-020-69933-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/22/2020] [Indexed: 11/23/2022] Open
Abstract
In order to separate a mixture of hydrogen (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2) and carbon dioxide (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {CO}_{2}$$\end{document}CO2) gases, we have proposed a new approach employing the graphdiyne-like membrane (GDY-H) using density functional theory (DFT) calculations and molecular dynamics (MD) simulations. GDY-H is constructed by removing one-third diacetylenic (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{-}\text {C}{\equiv}\text {C}{-}\text {C}{\equiv}\text {C}{-}}$$\end{document}-C≡C-C≡C-) bonds linkages and replacing with hydrogen atoms in graphdiyne structure. Our DFT calculations exhibit poor selectivity and good permeances for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {CO}_{2}$$\end{document}CO2 gases passing through this membrane. To improve the performance of the GDY-H membrane for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {CO}_{2}$$\end{document}CO2 separation, we have placed two layers of GDY-H adjacent to each other which the distance between them is 2 nm. Then, we have inserted 1,3,5-triaminobenzene between two layers. In this approach, the selectivity of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {CO}_{2}$$\end{document}CO2 is increased from 5.65 to completely purified \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2 gas at 300 K. Furthermore, GDY-H membrane represents excellent permeance, about \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$10^8$$\end{document}108 gas permeation unit (GPU), for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2 molecule at temperatures above 20 K. The \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2 permeance is much higher than the value of the usual industrial limits. Moreover, our proposed approach shows a good balance between the selectivity and permeance parameters for the gas separation which is an essential factor for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {H}_{2}$$\end{document}H2 purification and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {CO}_{2}$$\end{document}CO2 capture processes in the industry.
Collapse
|
25
|
Xu Y, Xu J, Yang C. Molecule design of effective C2H4/C2H6 separation membranes: From 2D nanoporous graphene to 3D AHT zeolite. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Xu Y, Zhu H, Wang M, Xu J, Yang C. Separation of 1-Butene and 2-Butene Isomers via Nanoporous Graphene: A Molecular Simulation Study. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yinxiang Xu
- School of Space and Environment, Beihang University, Beijing 100191, China
- College of Mechanical Engineering, Sichuan University of Science and Engineering, Sichuan 643000, China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Huajian Zhu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Wang
- Dynamic Machinery Institute of Inner Mongolia, Hohhot 010010, China
| | - Junbo Xu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
27
|
Separation of noble gases using CHA-type zeolite membrane: insights from molecular dynamics simulation. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01139-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Cheng Y, Pu Y, Zhao D. Two‐Dimensional Membranes: New Paradigms for High‐Performance Separation Membranes. Chem Asian J 2020; 15:2241-2270. [DOI: 10.1002/asia.202000013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Youdong Cheng
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore
| | - Yunchuan Pu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore
| |
Collapse
|
29
|
|
30
|
Hou Y, Li Y, Jiang C, Xu Y, Wang M, Niu QJ. Molecular simulation for separation of ethylene and ethane by functionalised graphene membrane. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1632451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yingfei Hou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Shandong, People’s Republic of China
| | - Yiyu Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Shandong, People’s Republic of China
| | - Chi Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Shandong, People’s Republic of China
| | - Yang Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Shandong, People’s Republic of China
| | - Mumin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Shandong, People’s Republic of China
| | - Qingshan Jason Niu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Shandong, People’s Republic of China
| |
Collapse
|
31
|
Xu Y, Zhang Y, Wang S, Xu J, Yang C. Conformation-induced separation of 3-chloropropene from 1-chloropropane through nanoporous monolayer graphenes. Phys Chem Chem Phys 2019; 21:5170-5177. [DOI: 10.1039/c9cp00137a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Conformation-induced separation shows that C3H5 twisting to the pore preferred cis-conformation with a lower energy penalty than C3H7 can cross the nanopore.
Collapse
Affiliation(s)
- Yinxiang Xu
- School of Space and Environment
- Beihang University
- Beijing 100191
- China
- College of Mechanical Engineering
| | - Yujia Zhang
- CAS Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | | | - Junbo Xu
- CAS Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Chao Yang
- School of Space and Environment
- Beihang University
- Beijing 100191
- China
- CAS Key Laboratory of Green Process and Engineering
| |
Collapse
|
32
|
Jin B, Zhang X, Li F, Zhang N, Zong Z, Cao S, Li Z, Chen X. Influence of nanopore density on ethylene/acetylene separation by monolayer graphene. Phys Chem Chem Phys 2019; 21:6126-6132. [DOI: 10.1039/c9cp00682f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We designed a monolayer nanoporous graphene membrane and revealed the influence of nanopore density on its ethylene/acetylene separation performance by employing molecular dynamics simulations. Our results indicate that an optimal nanopore density exists for permeation flux and selectivity.
Collapse
Affiliation(s)
- Bo Jin
- The School of Nuclear Science and Technology
- Lanzhou University
- Lanzhou
- P. R. China
| | - Xin Zhang
- The School of Nuclear Science and Technology
- Lanzhou University
- Lanzhou
- P. R. China
| | - Fei Li
- The School of Nuclear Science and Technology
- Lanzhou University
- Lanzhou
- P. R. China
| | - Ning Zhang
- School of Physics
- Peking University
- Beijing
- P. R. China
| | - Zewen Zong
- The School of Nuclear Science and Technology
- Lanzhou University
- Lanzhou
- P. R. China
| | - Shiwei Cao
- Institute of Modern Physics
- Chinese Academy of Sciences
- Lanzhou
- P. R. China
| | - Zhan Li
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- P. R. China
| | - Ximeng Chen
- The School of Nuclear Science and Technology
- Lanzhou University
- Lanzhou
- P. R. China
| |
Collapse
|
33
|
Wang S, Tian Z, Dai S, Jiang DE. Effect of pore density on gas permeation through nanoporous graphene membranes. NANOSCALE 2018; 10:14660-14666. [PMID: 30033462 DOI: 10.1039/c8nr02625d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pore density is an important factor dictating gas separations through one-atom-thin nanoporous membranes, but how it influences the gas permeation is not fully understood. Here we use molecular dynamics (MD) simulations to investigate gas permeation through nanoporous graphene membranes with the same pore size (3.0 Å × 3.8 Å in dimensions) but varying pore densities (from 0.01 to 1.28 nm-2). We find that higher pore density leads to higher permeation per unit area of membrane for both CO2 and He, but the rate of the increase decreases greatly for CO2 at high pore densities. As a result, the per-pore permeance decreases for CO2 but remains relatively constant for He with the pore density, leading to a dramatic change in CO2/He selectivity. By separating the total flux into direct flux and surface flux, we find that He permeation is dominated by direct flux and hence the per-pore permeation rate is roughly constant with the pore density. In contrast, CO2 permeation is dominated by surface flux and the overall decreasing trend of the per-pore permeation rate of CO2 with the pore density can be explained by the decreasing per-pore coverage of CO2 on the feed side with the pore density. Our work now provides a complete picture of the pore-density dependence of gas permeation through one-atom-thin nanoporous membranes.
Collapse
Affiliation(s)
- Song Wang
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | | | | | | |
Collapse
|
34
|
Owais C, James A, John C, Dhali R, Swathi RS. Selective Permeation through One-Atom-Thick Nanoporous Carbon Membranes: Theory Reveals Excellent Design Strategies! J Phys Chem B 2018; 122:5127-5146. [DOI: 10.1021/acs.jpcb.8b01117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Cheriyacheruvakkara Owais
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Vithura, Thiruvananthapuram 695551, India
| | - Anto James
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Vithura, Thiruvananthapuram 695551, India
| | - Chris John
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Vithura, Thiruvananthapuram 695551, India
| | - Rama Dhali
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Vithura, Thiruvananthapuram 695551, India
| | - Rotti Srinivasamurthy Swathi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
35
|
Zhang Y, Meng Z, Shi Q, Gao H, Liu Y, Wang Y, Rao D, Deng K, Lu R. Nanoporous MoS 2 monolayer as a promising membrane for purifying hydrogen and enriching methane. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:375201. [PMID: 28675145 DOI: 10.1088/1361-648x/aa7d5e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a theoretical prediction of a highly efficient membrane for hydrogen purification and natural gas upgrading, i.e. laminar MoS2 material with triangular sulfur-edged nanopores. We calculated from first principles the diffusion barriers of H2 and CO2 across monolayer MoS2 to be, respectively, 0.07 eV and 0.17 eV, which are low enough to warrant their great permeability. The permeance values for H2 and CO2 far exceed the industrially accepted standard. Meanwhile, such a porous MoS2 membrane shows excellent selectivity in terms of H2/CO, H2/N2, H2/CH4, and CO2/CH4 separation (>103, > 103, > 106, and > 104, respectively) at room temperature. We expect that the findings in this work will expedite theoretical or experimental exploration on gas separation membranes based on transition metal dichalcogenides.
Collapse
Affiliation(s)
- Yadong Zhang
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yuan Z, Govind Rajan A, Misra RP, Drahushuk LW, Agrawal KV, Strano MS, Blankschtein D. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation. ACS NANO 2017; 11:7974-7987. [PMID: 28696710 DOI: 10.1021/acsnano.7b02523] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to its atomic thickness, porous graphene with sub-nanometer pore sizes constitutes a promising candidate for gas separation membranes that exhibit ultrahigh permeances. While graphene pores can greatly facilitate gas mixture separation, there is currently no validated analytical framework with which one can predict gas permeation through a given graphene pore. In this work, we simulate the permeation of adsorptive gases, such as CO2 and CH4, through sub-nanometer graphene pores using molecular dynamics simulations. We show that gas permeation can typically be decoupled into two steps: (1) adsorption of gas molecules to the pore mouth and (2) translocation of gas molecules from the pore mouth on one side of the graphene membrane to the pore mouth on the other side. We find that the translocation rate coefficient can be expressed using an Arrhenius-type equation, where the energy barrier and the pre-exponential factor can be theoretically predicted using the transition state theory for classical barrier crossing events. We propose a relation between the pre-exponential factor and the entropy penalty of a gas molecule crossing the pore. Furthermore, on the basis of the theory, we propose an efficient algorithm to calculate CO2 and CH4 permeances per pore for sub-nanometer graphene pores of any shape. For the CO2/CH4 mixture, the graphene nanopores exhibit a trade-off between the CO2 permeance and the CO2/CH4 separation factor. This upper bound on a Robeson plot of selectivity versus permeance for a given pore density is predicted and described by the theory. Pores with CO2/CH4 separation factors higher than 102 have CO2 permeances per pore lower than 10-22 mol s-1 Pa-1, and pores with separation factors of ∼10 have CO2 permeances per pore between 10-22 and 10-21 mol s-1 Pa-1. Finally, we show that a pore density of 1014 m-2 is required for a porous graphene membrane to exceed the permeance-selectivity upper bound of polymeric materials. Moreover, we show that a higher pore density can potentially further boost the permeation performance of a porous graphene membrane above all existing membranes. Our findings provide insights into the potential and the limitations of porous graphene membranes for gas separation and provide an efficient methodology for screening nanopore configurations and sizes for the efficient separation of desired gas mixtures.
Collapse
Affiliation(s)
- Zhe Yuan
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ananth Govind Rajan
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Lee W Drahushuk
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Kumar Varoon Agrawal
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne , Route Cantonale, 1015 Lausanne, Switzerland
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Paraense MO, da Cunha THR, Ferlauto AS, de Souza Figueiredo KC. Monolayer and bilayer graphene on polydimethylsiloxane as a composite membrane for gas-barrier applications. J Appl Polym Sci 2017. [DOI: 10.1002/app.45521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mariana Ogando Paraense
- Department of Chemical Engineering, School of Engineering; Federal University of Minas Gerais; Avenida Presidente Antônio Carlos, 6627, Belo Horizonte Minas Gerais 31270-901 Brazil
| | - Thiago Henrique Rodrigues da Cunha
- Department of Physics; Federal University of Minas Gerais; Avenida Presidente Antônio Carlos, 6627, Belo Horizonte Minas Gerais 31270-901 Brazil
| | - Andre Santarosa Ferlauto
- Department of Physics; Federal University of Minas Gerais; Avenida Presidente Antônio Carlos, 6627, Belo Horizonte Minas Gerais 31270-901 Brazil
| | - Kátia Cecília de Souza Figueiredo
- Department of Chemical Engineering, School of Engineering; Federal University of Minas Gerais; Avenida Presidente Antônio Carlos, 6627, Belo Horizonte Minas Gerais 31270-901 Brazil
| |
Collapse
|
38
|
Wang L, Boutilier MSH, Kidambi PR, Jang D, Hadjiconstantinou NG, Karnik R. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. NATURE NANOTECHNOLOGY 2017; 12:509-522. [PMID: 28584292 DOI: 10.1038/nnano.2017.72] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/20/2017] [Indexed: 05/22/2023]
Abstract
Graphene and other two-dimensional materials offer a new approach to controlling mass transport at the nanoscale. These materials can sustain nanoscale pores in their rigid lattices and due to their minimum possible material thickness, high mechanical strength and chemical robustness, they could be used to address persistent challenges in membrane separations. Here we discuss theoretical and experimental developments in the emerging field of nanoporous atomically thin membranes, focusing on the fundamental mechanisms of gas- and liquid-phase transport, membrane fabrication techniques and advances towards practical application. We highlight potential functional characteristics of the membranes and discuss applications where they are expected to offer advantages. Finally, we outline the major scientific questions and technological challenges that need to be addressed to bridge the gap from theoretical simulations and proof-of-concept experiments to real-world applications.
Collapse
Affiliation(s)
- Luda Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael S H Boutilier
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Piran R Kidambi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Doojoon Jang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Nicolas G Hadjiconstantinou
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
39
|
Tian Z, Mahurin SM, Dai S, Jiang DE. Ion-Gated Gas Separation through Porous Graphene. NANO LETTERS 2017; 17:1802-1807. [PMID: 28231000 DOI: 10.1021/acs.nanolett.6b05121] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Porous graphene holds great promise as a one-atom-thin, high-permeance membrane for gas separation, but to precisely control the pore size down to 3-5 Å proves challenging. Here we propose an ion-gated graphene membrane comprising a monolayer of ionic liquid-coated porous graphene to dynamically modulate the pore size to achieve selective gas separation. This approach enables the otherwise nonselective large pores on the order of 1 nm in size to be selective for gases whose diameters range from 3 to 4 Å. We show from molecular dynamics simulations that CO2, N2, and CH4 all can permeate through a 6 Å nanopore in graphene without any selectivity. But when a monolayer of [emim][BF4] ionic liquid (IL) is deposited on the porous graphene, CO2 has much higher permeance than the other two gases. We find that the anion dynamically modulates the pore size by hovering above the pore and provides affinity for CO2, while the larger cation (which cannot go through the pore) holds the anion in place via electrostatic attraction. This composite membrane is especially promising for CO2/CH4 separation, yielding a CO2/CH4 selectivity of about 42 and CO2 permeance of ∼105 GPU (gas permeation unit). We further demonstrate that selectivity and permeance can be tuned by the anion size, pore size, and IL thickness. The present work points toward a promising direction of using the atom-thin ionic liquid/porous graphene hybrid membrane for high-permeance, selective gas separation that allows a greater flexibility in substrate pore size control.
Collapse
Affiliation(s)
- Ziqi Tian
- Department of Chemistry, University of California , Riverside, California 92521, United States
| | - Shannon M Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, The University of Tennessee , Knoxville, Tennessee 37996, United States
| | - De-En Jiang
- Department of Chemistry, University of California , Riverside, California 92521, United States
| |
Collapse
|
40
|
Abstract
Gas diffusion on graphene surfaces is a two-dimensional gas behavior, controlled not by the hopping mechanism but by molecular collisions.
Collapse
Affiliation(s)
- Chengzhen Sun
- State Key Laboratory of Multiphase Flow in Power Engineering
- Xi'an Jiaotong University
- Shaanxi 710049
- China
| | - Bofeng Bai
- State Key Laboratory of Multiphase Flow in Power Engineering
- Xi'an Jiaotong University
- Shaanxi 710049
- China
| |
Collapse
|
41
|
Yue W, Hua H, Tian Y, Li J, Jiang S, Tang C, Xu S, Ma Y, Ren J, Bai C. An unmodified graphene foam chemical sensor based on SVM for discrimination of chemical molecules with broad selectivity. RSC Adv 2017. [DOI: 10.1039/c7ra07963j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Compared to conventional chemical sensors, this paper presented a chemical sensor system with broad selectivity for a variety of molecules without any surface modification.
Collapse
|
42
|
Drahushuk LW, Wang L, Koenig SP, Bunch JS, Strano MS. Analysis of Time-Varying, Stochastic Gas Transport through Graphene Membranes. ACS NANO 2016; 10:786-795. [PMID: 26720748 DOI: 10.1021/acsnano.5b05870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Molecular transport measurements through isolated nanopores can greatly inform our understanding of how such systems can select for molecular size and shape. In this work, we present a detailed analysis of experimental gas permeation data through single layer graphene membranes under batch depletion conditions parametric in starting pressure for He, H2, Ne, and CO2 between 100 and 670 kPa. We show mathematically that the observed intersections of the membrane deflection curves parametric in starting pressure are indicative of a time dependent membrane permeance (pressure normalized molecular flow). Analyzing these time dependent permeance data for He, Ne, H2, and CO2 shows remarkably that the latter three gases exhibit discretized permeance values that are temporally repeated. Such quantized fluctuations (called "gating" for liquid phase nanopore and ion channel systems) are a hallmark of isolated nanopores, since small, but rapid changes in the transport pathway necessarily influence a single detectable flux. We analyze the fluctuations using a Hidden Markov model to fit to discrete states and estimate the activation barrier for switching at 1.0 eV. This barrier is and the relative fluxes are consistent with a chemical bond rearrangement of an 8-10 atom vacancy pore. Furthermore, we use the relations between the states given by the Markov network for few pores to determine that three pores, each exhibiting two state switching, are responsible for the observed fluctuations; and we compare simulated control data sets with and without the Markov network for comparison and to establish confidence in our evaluation of the limited experimental data set.
Collapse
Affiliation(s)
| | - Luda Wang
- Department of Mechanical Engineering, University of Colorado at Boulder , Boulder, Colorado 80309, United States
| | - Steven P Koenig
- Department of Physics, National University of Singapore , 117542 Singapore
- Graphene Research Centre, National University of Singapore , 117546 Singapore
| | - J Scott Bunch
- Department of Mechanical Engineering, Boston University , Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University , Brookline, Massachusetts 02446, United States
| | | |
Collapse
|
43
|
Tian Z, Dai S, Jiang D. What can molecular simulation do for global warming? WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1241] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ziqi Tian
- Department of Chemistry University of California Riverside CA USA
| | - Sheng Dai
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN USA
- Department of Chemistry The University of Tennessee Knoxville, TN USA
| | - De‐en Jiang
- Department of Chemistry University of California Riverside CA USA
| |
Collapse
|
44
|
Abstract
The progresses in syntheses of large-area single-layer graphene and applications in membrane separation are summarized in this review.
Collapse
Affiliation(s)
- Xiao-Hong Lin
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu
- China
| | - Jing-Gang Gai
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu
- China
| |
Collapse
|
45
|
Wang Y, Yang Q, Li J, Yang J, Zhong C. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study. Phys Chem Chem Phys 2016; 18:8352-8. [DOI: 10.1039/c5cp06569k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The graphene membrane, H-pore-13, with its appropriate pore size of 4.06 Å, exhibits high N2 selectivity over CO2 with a N2 permeance of 105 GPU. It is further revealed that electrostatic sieving plays a crucial role in hindering the passage of CO2 molecules through H-pore-13.
Collapse
Affiliation(s)
- Yong Wang
- Research Institute of Special Chemicals
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Qingyuan Yang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jinping Li
- Research Institute of Special Chemicals
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Jiangfeng Yang
- Research Institute of Special Chemicals
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Chongli Zhong
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
46
|
Sun C, Wen B, Bai B. Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0914-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Tan X, Kou L, Tahini HA, Smith SC. Charge-modulated permeability and selectivity in graphdiyne for hydrogen purification. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1086486] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nat Commun 2015; 6:8335. [PMID: 26395422 PMCID: PMC4667428 DOI: 10.1038/ncomms9335] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/11/2015] [Indexed: 12/24/2022] Open
Abstract
The intrinsic defects in reduced graphene oxide (rGO) formed during reduction processes can act as nanopores, making rGO a promising ultrathin-film membrane candidate for separations. To assess the potential of rGO for such applications, molecular dynamics techniques are employed to understand the defect formation in rGO and their separation performance in water desalination and natural gas purification. We establish the relationship between rGO synthesis parameters and defect sizes, resulting in a potential means to control the size of nanopores in rGO. Furthermore, our results show that rGO membranes obtained under properly chosen synthesis conditions can achieve effective separations and provide significantly higher permeate fluxes than currently available membranes. Ultrathin-film nanoporous membranes promise low-cost and high-performance separation for applications such as water desalination and the purification of natural gas. Here, the authors adopt a molecular dynamics approach to assess the potential of reduced grapheme oxide as such a material.
Collapse
|
49
|
Tian Z, Dai S, Jiang DE. Expanded Porphyrins as Two-Dimensional Porous Membranes for CO2 Separation. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13073-13079. [PMID: 25988306 DOI: 10.1021/acsami.5b03275] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Porphyrin-based two-dimensional polymers have uniform micropores and close to atom-thin thicknesses, but they have not been explored for gas separation. Herein we design various expanded porphyrin derivatives for their potential application in membrane gas separation, using CO2/N2 as an example. Pore sizes are determined based on both van der Waals radii and electron density distribution. Potential energy curves for CO2 and N2 passing through are mapped by dispersion-corrected density functional theory calculations. The passing-through barriers are used to evaluate CO2/N2 separation selectivity. Promising subunits for CO2 separation have been selected from the selectivity estimates. 2D membranes composed of amethyrin derivatives are shown to have high ideal selectivity on the order of 10(6) for CO2/N2 separation. Classical molecular dynamics simulation yields a permeance of 10(4)-10(5) GPU for CO2 through extended 2D membranes based on amethyrin derivatives. This work demonstrates that porphyrin systems could offer an attractive bottom-up approach for 2D porous membranes.
Collapse
Affiliation(s)
- Ziqi Tian
- †Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Sheng Dai
- ‡Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6201, United States
- §Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - De-en Jiang
- †Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
50
|
Wen B, Sun C, Bai B. Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes. Phys Chem Chem Phys 2015; 17:23619-26. [DOI: 10.1039/c5cp03195h] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes is identified using molecular dynamics simulations.
Collapse
Affiliation(s)
- Boyao Wen
- State Key Laboratory of Multiphase Flow in Power Engineering
- Xi’an Jiaotong University
- Xi'an
- China
| | - Chengzhen Sun
- State Key Laboratory of Multiphase Flow in Power Engineering
- Xi’an Jiaotong University
- Xi'an
- China
| | - Bofeng Bai
- State Key Laboratory of Multiphase Flow in Power Engineering
- Xi’an Jiaotong University
- Xi'an
- China
| |
Collapse
|