1
|
Chen Y, Yang Z, Hu H, Zhou X, You F, Yao C, Liu FJ, Yu P, Wu D, Yao J, Hu R, Jiang X, Yang H. Advanced Metal-Organic Frameworks-Based Catalysts in Electrochemical Sensors. Front Chem 2022; 10:881172. [PMID: 35433639 PMCID: PMC9010028 DOI: 10.3389/fchem.2022.881172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 01/18/2023] Open
Abstract
Developing efficient catalysts is vital for the application of electrochemical sensors. Metal-organic frameworks (MOFs), with high porosity, large specific surface area, good conductivity, and biocompatibility, have been widely used in catalysis, adsorption, separation, and energy storage applications. In this invited review, the recent advances of a novel MOF-based catalysts in electrochemical sensors are summarized. Based on the structure-activity-performance relationship of MOF-based catalysts, their mechanism as electrochemical sensor, including metal cations, synthetic ligands, and structure, are introduced. Then, the MOF-based composites are successively divided into metal-based, carbon-based, and other MOF-based composites. Furthermore, their application in environmental monitoring, food safety control, and clinical diagnosis is discussed. The perspective and challenges for advanced MOF-based composites are proposed at the end of this contribution.
Collapse
Affiliation(s)
- Yana Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Zhiquan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Huilin Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Xinchen Zhou
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Feng You
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Chu Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Fang Jun Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Peng Yu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Dan Wu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Junlong Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ruofei Hu
- Department of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Huan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
2
|
Ji X, Yu C, Wen Y, Chen J, Yu Y, Zhang C, Gao R, Mu X, He J. Fabrication of pioneering 3D sakura-shaped metal-organic coordination polymers Cu@L-Glu phenomenal for signal amplification in highly sensitive detection of zearalenone. Biosens Bioelectron 2019; 129:139-146. [PMID: 30690178 DOI: 10.1016/j.bios.2019.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/11/2018] [Accepted: 01/04/2019] [Indexed: 12/29/2022]
Abstract
Low molecular weight pollutants from foods have aroused global attention due to their toxicity after long-time exposure. There is an increased demand for appropriate methods to detect these pollutants in foods. In this study, a brand-new type of nano metal-organic coordination polymers (MOCPs) nanocarriers (3D sakura-shaped copper (II) ions@L-glutamic acid (L-Glu)) has been first synthesized. We herein demonstrate a facile chelated method that allows the combination of copper (II) ions and L-Glu. A series of controlled experiments have revealed that the reaction time and the ratio of reactants played the crucial roles in affecting the morphology of the final product. 3D sakura-shaped Cu@L-Glu combined with palladium-platinum nanoparticle (Pd-PtNPs) to obtain Cu@L-Glu/Pd-PtNPs acting as the signal tag, which applied in electrochemical aptasensor for ultrasensitive detection of zearalenone (ZEN). A glassy carbon electrode was first modified with spherical Au-PANI-Au nanohybrids to enhance the conductivity and immobilize more amino modified ZEN aptamer. Cu@L-Glu/Pd-PtNPs were labeled with Complementary DNA (partial matching with ZEN aptamer) to form bioconjugates for signal amplification. After the hybridization reaction of ZEN aptamer and the bioconjugates, a significant electrochemical signal from the catalysis of H2O2 by Cu@L-Glu/Pd-PtNPs can be observed. ZEN competed with bioconjugates for binding to ZEN aptamer, resulting in decreased the electrochemical signal. Chronoamperometry was applied to record the final electrochemical signals. Under optimal conditions, the electrochemical aptasensor exhibited desirable sensitive detection of ZEN with a wide linearity ranging from 1 fg/mL to 100 ng/mL and a relatively low detection limit of 0.45 fg/mL (S/N = 3). Furthermore, the proposed electrochemical aptasensor shows excellent selectivity to the ZEN in the presence of possible interfering substances, and has potential application for ZEN detection in food samples.
Collapse
Affiliation(s)
- Xingduo Ji
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yilin Wen
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Chen
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yujie Yu
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chengli Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Rufei Gao
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xinyi Mu
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Junlin He
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
4
|
One Pot Synthesis, Photophysical and X-ray Studies of Novel Highly Fluorescent Isoquinoline Derivatives with Higher Antibacterial Efficacy Based on the In-vitro and Density Functional Theory. J Fluoresc 2015; 25:503-18. [PMID: 25740342 DOI: 10.1007/s10895-015-1506-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/02/2015] [Indexed: 10/23/2022]
Abstract
Series of cyano substituted isoquinoline dyes were synthesized by one-pot multicomponent reactions (MCRs) of aldehydes, malononitrile, 6-methoxy-1,2,3,4-tetrahydro-naphthalin-1-one and ammonium acetate. Results obtained from spectroscopic (FT-IR, (1)H-NMR, (13)C-NMR, EI-MS) and elemental analysis of synthesized compounds was in agreement with their chemical structures. Structure of the compound was further conformed by X-ray crystallographic. UV-vis and fluorescence spectroscopy measurements provided that all compounds are good absorbent and fluorescent. Fluorescence polarity study demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including electronic absorption, extenction coefficient, Stokes shift, oscillator strength transition dipole moment and fluorescence quantum yield were investigated in order to explore the analytical potential of synthesized compounds. The anti-bacterial activity of these compounds were first studied in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria. The minimum inhibitory concentration was then determined with the reference of standard drug chloramphenicol. The results displayed that compound 3 was better inhibitors of both types of the bacteria (Gram-positive and Gram-negative) than chloramphenicol. Furthermore, quantum chemistry calculations using DFT/6-31-G* level of theory confirm the results. Dipole moment and frontier molecular orbitals were also investigated.
Collapse
|
5
|
Zhou B, Liang LM, Yao J. Nanoflakes of an aminoacid-based chiral coordination polymer: Synthesis, optical and electrochemical properties, and application in electrochemical sensing of H2O2. J SOLID STATE CHEM 2015. [DOI: 10.1016/j.jssc.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Shi LM, Pan JX, Zhou B, Jiang X. A new bifunctional electrochemical sensor for hydrogen peroxide and nitrite based on a bimetallic metalloporphyrinic framework. J Mater Chem B 2015; 3:9340-9348. [DOI: 10.1039/c5tb01361e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bimetallic electrocatalytic ability of a new metallic porphyrin, Cu-CoTCPP, toward redox of H2O2 and oxidation of NaNO2.
Collapse
Affiliation(s)
- Li-Mei Shi
- Jiangsu Key Laboratory of New Power Batteries
- National-Local Joint Engineering Research Center for Biomedical Functional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biomedical Materials
- College of Chemistry and Materials Science
| | - Jing-Xiong Pan
- Jiangsu Key Laboratory of New Power Batteries
- National-Local Joint Engineering Research Center for Biomedical Functional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biomedical Materials
- College of Chemistry and Materials Science
| | - Bo Zhou
- Jiangsu Key Laboratory of New Power Batteries
- National-Local Joint Engineering Research Center for Biomedical Functional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biomedical Materials
- College of Chemistry and Materials Science
| | - Xiaoqing Jiang
- Jiangsu Key Laboratory of New Power Batteries
- National-Local Joint Engineering Research Center for Biomedical Functional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biomedical Materials
- College of Chemistry and Materials Science
| |
Collapse
|