1
|
Fan Y, Chi J, Wang L, Jia C, Zhang W. Aluminum substitution stabilizes organic matter in ferrihydrite transforming into hematite: A molecular analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174035. [PMID: 38885705 DOI: 10.1016/j.scitotenv.2024.174035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The association of soil organic matter (SOM) with iron (Fe) oxyhydroxides, particularly ferrihydrite, plays a pivotal role in the biogeochemical cycling of carbon (C) in both terrestrial and aquatic environment. The aging of ferrihydrite to more crystalline phases can impact the stability of associated organic C, a process potentially influenced by aluminum (Al) substitution due to its abundance. However, the molecular mechanisms governing the temporal and spatial distribution of SOM during the aging process of Al-substituted Fe oxyhydroxides remain unclear. This study aims to bridge this knowledge gap through a comprehensive approach, utilizing batch experiments, solid characterization techniques, and atomic force microscopy (AFM) based peak-force quantitative nanomechanical mapping (PF-QNM). Batch experiments revealed that humic acid (HA) was released into the aqueous phase during aging, with Al inhibiting this release. Various solid characterization methods collectively suggested that Al hindered the crystalline transformation of ferrihydrite and significantly preserved HA on the surface of newly formed hematite, rather than it being occluded within the interior of the new minerals. Results from 3-Dimensional fluorescence spectroscopy (3D-EEM) and Fourier-transform infrared spectroscopy (FTIR) indicated that the structure of HA remained constant, with the carboxyl-rich and hydroxyl-rich portions of HA fixed at the mineral interface during the aging period. Furthermore, we developed AFM-based PF-QNM to both quantify and visualize the interactions between Fe oxyhydroxides and HA, demonstrating variations in HA affinity among different Fe oxyhydroxides and highlighting the influence of the Al substitution rate.
Collapse
Affiliation(s)
- Yuke Fan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialin Chi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chonghao Jia
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Belviso C, Mancinelli M, Abdolrahimi M, Sturini M, Cavalcante F, Lettino A, Peddis D. Red mud treated with KOH: synthesis of sustainable materials from waste for water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45414-45424. [PMID: 38963630 DOI: 10.1007/s11356-024-34083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Solid waste resulting from bauxite ore (red mud) was converted into useful products consisting in hydrogarnet together with zeolite. Red mud (RM) transformation from disposal material into new source was carried out using potassium hydroxide as an activator and hydrothermal process (HY) or vapor phase crystallization (VPC) approach. HY process was performed at 60, 90, and 130 °C whereas during the VPC method, red mud was contacted only with vapor from the distilled water heated at 60 and 90 °C. The results indicate the formation of katoite and zeolite L (LTL topology) with both approaches. All the synthetic products display magnetic properties. In addition, a preliminary investigation on arsenic removal from drinking water (from 59 to 86%), makes the synthetic materials appealing for environmental applications. Finally, the synthesis of a large amount of very useful newly-formed phases using vapor molecules confirms the efficiency of the innovative and green VPC process in waste material transformation.
Collapse
Affiliation(s)
- Claudia Belviso
- Istituto di Metodologie per l'Analisi Ambientale, IMAA-CNR, 85050, Tito Scalo (Potenza), Italy.
| | - Maura Mancinelli
- Department of Physics and Earth Sciences, University of Ferrara, 44122, Ferrara, Italy
| | - Maryam Abdolrahimi
- Institute of Structure of Matter, National Research Council, nM2-Lab, Via Salaria Km 29.300, Monterotondo Scalo, 00015, Rome, Italy
- Department of Chemistry and Industrial Chemistry & Genova, INSTM RU, nM2-Lab, University of Genova, 16146, Genoa, Italy
| | - Michela Sturini
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Francesco Cavalcante
- Istituto di Metodologie per l'Analisi Ambientale, IMAA-CNR, 85050, Tito Scalo (Potenza), Italy
| | - Antonio Lettino
- Istituto di Metodologie per l'Analisi Ambientale, IMAA-CNR, 85050, Tito Scalo (Potenza), Italy
| | - Davide Peddis
- Institute of Structure of Matter, National Research Council, nM2-Lab, Via Salaria Km 29.300, Monterotondo Scalo, 00015, Rome, Italy
- Department of Chemistry and Industrial Chemistry & Genova, INSTM RU, nM2-Lab, University of Genova, 16146, Genoa, Italy
| |
Collapse
|
3
|
Liang Y, Xiang Y, Wei Z, Avena M, Xiong J, Hou J, Wang M, Tan W. Complexation mechanism of Pb 2+ on Al-substituted hematite: A modeling study and theoretical calculation. ENVIRONMENTAL RESEARCH 2024; 252:118935. [PMID: 38621630 DOI: 10.1016/j.envres.2024.118935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Hematite nanoparticles commonly undergoes isomorphic substitution of Al3+ in nature, while how the Al-substitution-induced morphological change, defective structure and newly generated Al-OH sites affect the adsorption behavior of hematite for contaminants remains poorly understood. Herein, the interfacial reactions between Al-substituted hematite and Pb2+ was investigated via CD-MUSIC modeling and DFT calculations. As the Al content increased from 0% to 9.4%, Al-substitution promoted the proportion of (001) facets and caused Fe vacancies on hematite, which increased the total active site density of hematite from 5.60 to 17.60 sites/nm2. The surface positive charge of hematite significantly increased from 0.096 to 0.418 C/m2 at pH 5.0 due to the increases in site density and proton affinity (logKH) of hematite under Al-substitution. The adsorption amount of hematite for Pb2+ increased from 3.92 to 9.74 mmol/kg at pH 5.0 and 20 μmol/L initial Pb2+ concentration with increasing Al content. More Fe vacancies may lead to a weaker adsorption energy (Ead) of hematite for Pb2+, while the Ead was enhanced at higher Al content. The adsorption affinity (logKPb) of bidentate Pb complexes slightly increased while that of tridentate Pb complexes decreased with increasing Al content due to the presence of ≡ AlOH-0.5 and ≡ Fe2AlO-0.5 sites. Tridentate Pb complexes were dominant species on the surface of pure hematite, while bidentate ones became more dominant with increasing Al content. The obtained model parameters and molecular scale information are of great importance for better describing and predicting the environmental fate of toxic heavy metals in terrestrial and aquatic environments.
Collapse
Affiliation(s)
- Yu Liang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongjin Xiang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Marcelo Avena
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, B8000CPB, Bahía Blanca, Argentina
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Zhang X, Zhang L, Liu Y, Li M, Wu X, Jiang T, Chen C, Peng Y. Mn-substituted goethite for uranium immobilization: A study of adsorption behavior and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114184. [PMID: 32193078 DOI: 10.1016/j.envpol.2020.114184] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Goethite is a common iron hydroxide, which can be substituted by manganese (Mn) in the goethite structure. It is important to investigate the immobilization of uranium(VI) on Mn-substituted goethite (Mn-Goe) to understand the fate and migration of uranium in soils and sediments. In this study, the sorption of uranium(VI) by Mn-Goe was investigated as a function of pH, adsorbent dosage, contact time, and initial uranium concentration in batch experiments. Several material analysis techniques were used to characterize manganese substituted materials. Results indicated that Mn was successfully introduced into the goethite structure, the length of particles increased gradually, the surface clearly exhibited higher roughness with increasing Mn content, and that uranium(VI) sorption of synthetic Mn-Goe appeared to be higher than that of goethite. The sorption kinetics supported the results presented by the pseudo-second-order model. The sorption capacity of uranium on Mn-Goe was circa 77 mg g-1 at pH = 4.0 and 25 °C. Fourier transform-infrared spectroscopy (FT-IR) analyses revealed that uranium ions were adsorbed through functional groups containing oxygen on the Mn-Goe structure. The enhancement of Mn-substitution for the uranium(VI) sorption capacity of goethite was revealed. This study suggests that goethite and Mn-Goe can both play a significant role in controlling the mobility and transport of uranium(VI) in the subsurface environment, which is helpful for material development in environmental remediation.
Collapse
Affiliation(s)
- Xiaowen Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China; Hunan Province Engineering Research Centre of Radioactive Control Technology in Uranium Mining and Metallurgy, Hengyang, Hunan, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China
| | - Lijiang Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Yong Liu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China; Hunan Province Engineering Research Centre of Radioactive Control Technology in Uranium Mining and Metallurgy, Hengyang, Hunan, 421001, China.
| | - Mi Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China
| | - Xiaoyan Wu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China
| | - Tianjiao Jiang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Chen Chen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Peng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
5
|
Bemana H, Rashid-Nadimi S. Effect of sulfur doping on photoelectrochemical performance of hematite. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.150] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|