1
|
Chettiannan B, Srinivasan AK, Arumugam G, Shajahan S, Haija MA, Rajendran R. Incorporation of α-MnO 2 Nanoflowers into Zinc-Terephthalate Metal-Organic Frameworks for High-Performance Asymmetric Supercapacitors. ACS OMEGA 2023; 8:6982-6993. [PMID: 36844521 PMCID: PMC9948164 DOI: 10.1021/acsomega.2c07808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Herein, we report the synthesis of α-MnO2 nanoflower-incorporated zinc-terephthalate MOFs (MnO2@Zn-MOFs) via the conventional solution phase synthesis technique as an electrode material for supercapacitor applications. The material was characterized by powder-X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques. The prepared electrode material exhibited a specific capacitance of 880.58 F g-1 at 5 A g-1, which is higher than the pure Zn-BDC (610.83 F g-1) and pure α-MnO2 (541.69 F g-1). Also, it showed a 94% capacitance retention of its initial value after 10,000 cycles at 10 A g-1. The improved performance is attributed to the increased number of reactive sites and improved redox activity due to MnO2 inclusion. Moreover, an asymmetric supercapacitor assembled using MnO2@Zn-MOF as the anode and carbon black as the cathode delivered a specific capacitance of 160 F g-1 at 3 A g-1 with a high energy density of 40.68 W h kg-1 at a power density of 20.24 kW kg-1 with an operating potential of 0-1.35 V. The ASC also exhibited a good cycle stability of 90% of its initial capacitance.
Collapse
Affiliation(s)
- Balaji Chettiannan
- Department
of Physics, Periyar University, Salem 636011, Tamil Nadu, India
| | | | - Gowdhaman Arumugam
- Department
of Physics, Periyar University, Salem 636011, Tamil Nadu, India
| | - Shanavas Shajahan
- Department
of Chemistry, Khalifa University, P.O. Box, 127788, Abu Dhabi 127788, United Arab Emirates
| | - Mohammad Abu Haija
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, P.O. Box,
127788, Abu Dhabi 127788, United Arab Emirates
| | - Ramesh Rajendran
- Department
of Physics, Periyar University, Salem 636011, Tamil Nadu, India
| |
Collapse
|
2
|
MnO2 Doped with Ag Nanoparticles and Their Applications in Antimicrobial and Photocatalytic Reactions. Catalysts 2023. [DOI: 10.3390/catal13020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
A wide range of nanoparticles have been produced for photocatalysis applications. Nonetheless, degrading organic dyes requires nanoparticles that are efficient and excellent. As a photocatalyst, pure manganese oxide (MnO2) was prepared via a sol–gel method using silver (Ag) nanoparticles of transition metal oxide. In addition to X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX), the crystal structure and elemental composition were analysed. According to XRD data, the transition metal of MnO2 oxide is highly pure and has a small crystallite size. The presence of functional groups was confirmed and clarified using Fourier-transform infrared spectra (FTIR). By irradiating the transition pure and doped MnO2 photocatalysts with visible light, the UV-vis, μ-Raman, and surface areas were determined. As a result, of using the photocatalysts with aqueous methylene blue (MB) solutions under visible light irradiation, the MnO2 doped with Ag nanoparticles demonstrated high degradation efficiencies and were utilised to establish heterogeneous photocatalysis dominance. In this paper, we demonstrate that the photocatalytic efficiency of transition metal oxides is exclusively determined by the particle size and surface area of nano-sized materials. Due to their high surface charge ratio and different surface orientations, have the highest photocatalytic efficiency. Generally, MnO2 doped with Ag nanoparticles is resistant to bacteria of both Gram-positive and Gram-negative types (B. sublittus and Escherichia coli). There is still a need for more research to be performed on reducing the toxicity of metal and metal oxide nanoparticles so that they can be used as an effective alternative to antibiotics and disinfectants, particularly for biomedical applications.
Collapse
|
3
|
Zhang X, Liu W, Zhou Y, Li Y, Yang Y, Gou J, Shang J, Cheng X. Photo-assisted bismuth ferrite/manganese dioxide/nickel foam composites activating PMS for degradation of enrofloxacin in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Hu ZT, Chen Y, Fei YF, Loo SL, Chen G, Hu M, Song Y, Zhao J, Zhang Y, Wang J. An overview of nanomaterial-based novel disinfection technologies for harmful microorganisms: Mechanism, synthesis, devices and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155720. [PMID: 35525366 DOI: 10.1016/j.scitotenv.2022.155720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Harmful microorganism (e.g., new coronavirus) based infection is the most important security concern in life sciences and healthcare. This article aims to provide a state-of-the-art review on the development of advanced technology based on nanomaterial disinfection/sterilization techniques (NDST) for the first time including the nanomaterial types, disinfection techniques, bactericidal devices, sterilization products, and application scenarios (i.e., water, air, medical healthcare), with particular brief account of bactericidal behaviors referring to varied systems. In this emerging research area spanning the years from 1998 to 2021, total of ~200 publications selected for the type of review paper and research articles were reviewed. Four typical functional materials (namely type of metal/metal oxides, S-based, C-based, and N-based) with their development progresses in disinfection/sterilization are summarized with a list of synthesis and design. Among them, the widely used silver nanoparticles (AgNPs) are considered as the most effective bacterial agents in the type of nanomaterials at present and has been reported for inactivation of viruses, fungi, protozoa. Some methodologies against (1) disinfection by-products (DBPs) in traditional sterilization, (2) noble metal nanoparticles (NPs) agglomeration and release, (3) toxic metal leaching, (4) solar spectral response broadening, and (5) photogenerated e-/h+ pairs recombination are reviewed and discussed in this field, namely (1) alternative techniques and nanomaterials, (2) supporter anchoring effect, (3) nonmetal functional nanomaterials, (4) element doping, and (5) heterojunction constructing. The feasible strategies in the perspective of NDST are proposed to involve (1) non-noble metal disinfectors, (2) multi-functional nanomaterials, (3) multi-component nanocomposite innovation, and (4) hybrid techniques for disinfection/sterilization system. It is promising to achieve 100% bactericidal efficiency for 108 CFU/mL within a short time of less than 30 min.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yue Chen
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yan-Fei Fei
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Siew-Leng Loo
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yujie Song
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China.
| |
Collapse
|
5
|
Moawed EA, Kiwaan HA, El-Zakzouk SK, El-Sonbati MA, El-Zahed MM. Chemical recycling of polyurethane foam waste and application for antibacterial and removal of anionic and cationic dyes. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe large amounts of polyurethane foam wastes (PUFWs) produced in the automobiles, buildings, and furniture industries cause many environmental problems. Therefore, the recycling of PUFWs has acquired great interest worldwide. In this study, the PUFWs were converted to new nanocomposite. The chemical modification of PUFWs was conducted through reflux with potassium permanganate in 0.1 M H2SO4. The produced PUF-COO@MnO2 nanocomposites was characterized by scanning electron microscope, energy-dispersive X-ray spectrometry, X-ray diffraction, and Magnetic susceptibility. PUF-COO@MnO2 has been used for the removal of cationic (Methylene blue) and anionic (Trypan blue) dyes from industrial wastewater. The antibacterial effect of PUF-COO@MnO2 was also examined against Gram-positive and Gram-negative bacterial strains. The adsorption capacities of PUF-COO@MnO2 for tested dyes were 277 and 269 mg/g. Moreover, PUF-COO@MnO2 showed a potent antibacterial action against B. cereus (8.8 mm) followed by S. aureus (7.5 mm) and E. coli (7.1 mm). It was concluded that PUF-COO@MnO2 can be employed as antibacterial low-cost material and for the removal of synthetic dyes from industrial effluents.
Collapse
|
6
|
Samak NA, Selim MS, Hao Z, Xing J. Immobilized arginine/tryptophan-rich cyclic dodecapeptide on reduced graphene oxide anchored with manganese dioxide for microbial biofilm eradication. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128035. [PMID: 34954434 DOI: 10.1016/j.jhazmat.2021.128035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
To avoid the accumulation of bacterial biofilms in water pipelines, it is critical to develop potent antimicrobial agents with good ability to reduce extracellular polymeric substances (EPS). In this study, cyclic dodecapeptides were synthesized, and different mutations for increasing the ratio of arginine (Arg) and tryptophan (Trp) were introduced. Separately, the synthesized dodecapeptides were immobilized on a reduced graphene oxide nanocomposite anchored with a hierarchical β-MnO2 (RGO/β-MnO2) hybrid. With a minimum inhibitory concentration of 0.97 g/mL, the immobilized Arg-Trp rich antimicrobial peptides (AMP) on RGO/MnO2 nanocomposite, Cdp-4/RGO/MnO2, showed superior efficacy against multidrug-resistant Pseudomonas aeruginosa ATCC 15692 (P. aeruginosa) planktonic cells. The immobilized Cdp-4/RGO/β-MnO2 also eradicated the mature biofilm by 99% with a minimum inhibitory concentration value of 62.5 µg/mL with significant reduction of EPS. These characteristics allow the use of the immobilized Arg-Trp rich AMP as a promising antimicrobial agent against microbial biofilms, present in water distribution systems.
Collapse
Affiliation(s)
- Nadia A Samak
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Environmental Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg-Essen, 4141 Essen, Germany; Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt; College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mohamed S Selim
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China; Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt
| | - Zhifeng Hao
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, PR China.
| |
Collapse
|
7
|
Shaheen S, Iqbal A, Ikram M, Ul-Ain K, Naz S, Ul-Hamid A, Shahzadi A, Haider A, Nabgan W, Haider J. Effective Disposal of Methylene Blue and Bactericidal Benefits of Using GO-Doped MnO 2 Nanorods Synthesized through One-Pot Synthesis. ACS OMEGA 2021; 6:24866-24878. [PMID: 34604668 PMCID: PMC8482489 DOI: 10.1021/acsomega.1c03723] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/09/2021] [Indexed: 05/28/2023]
Abstract
Graphene oxide (GO)-doped MnO2 nanorods loaded with 2, 4, and 6% GO were synthesized via the chemical precipitation route at room temperature. The aim of this work was to determine the catalytic and bactericidal activities of prepared nanocomposites. Structural, optical, and morphological properties as well as elemental composition of samples were investigated with advanced techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-visible (vis) spectroscopy, photoluminescence (PL), energy-dispersive spectrometry (EDS), and high-resolution transmission electron microscopy (HR-TEM). XRD measurements confirmed the monoclinic structure of MnO2. Vibrational mode and rotational mode of functional groups (O-H, C=C, C-O, and Mn-O) were evaluated using FTIR results. Band gap energy and blueshift in the absorption spectra of MnO2 and GO-doped MnO2 were identified with UV-vis spectroscopy. Emission spectra were attained using PL spectroscopy, whereas elemental composition of prepared materials was recorded with scanning electron microscopy (SEM)-EDS. Moreover, HR-TEM micrographs of doped and undoped MnO2 revealed elongated nanorod-like structure. Efficient degradation of methylene blue enhanced the catalytic activity in the presence of a reducing agent (NaBH4); this was attributed to the implantation of GO on MnO2 nanorods. Furthermore, substantial inhibition areas were measured for Escherichia coli (EC) ranging 2.10-2.85 mm and 2.50-3.15 mm at decreased and increased levels for doped MnO2 nanorods and 3.05-4.25 mm and 4.20-5.15 mm for both attentions against SA, respectively. In silico molecular docking studies suggested the inhibition of FabH and DNA gyrase of E. coli and Staphylococcus aureus as a possible mechanism behind the bactericidal activity of MnO2 and MnO2-doped GO nanoparticles (NPs).
Collapse
Affiliation(s)
- Saira Shaheen
- Department
of Physics, School of Science, University
of Management and Technology, Lahore 54000, Pakistan
| | - Azhar Iqbal
- Department
of Physics, School of Science, University
of Management and Technology, Lahore 54000, Pakistan
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Government
College University Lahore, Lahore 54000, Pakistan
| | - Kashaf Ul-Ain
- Department
of Physics, RICAS, Riphah International
University, Lahore Campus, Lahore 54000, Pakistan
| | - Sadia Naz
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Anwar Ul-Hamid
- Core
Research Facilities, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Anum Shahzadi
- Punjab University
College of Pharmacy, University of the Punjab, Lahore 54000, Pakistan
| | - Ali Haider
- Department
of Clinical Medicine and Surgery, University
of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan
| | - Walid Nabgan
- School
of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Junaid Haider
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
8
|
Anusuya N, Pragathiswaran C, Mary JV. A potential catalyst - TiO2/ZnO based chitosan gel beads for the reduction of nitro-aromatic compounds aggregated sodium borohydride and their antimicrobial activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Yang R, Fan Y, Ye R, Tang Y, Cao X, Yin Z, Zeng Z. MnO 2 -Based Materials for Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004862. [PMID: 33448089 DOI: 10.1002/adma.202004862] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Manganese dioxide (MnO2 ) is a promising photo-thermo-electric-responsive semiconductor material for environmental applications, owing to its various favorable properties. However, the unsatisfactory environmental purification efficiency of this material has limited its further applications. Fortunately, in the last few years, significant efforts have been undertaken for improving the environmental purification efficiency of this material and understanding its underlying mechanism. Here, the aim is to summarize the recent experimental and computational research progress in the modification of MnO2 single species by morphology control, structure construction, facet engineering, and element doping. Moreover, the design and fabrication of MnO2 -based composites via the construction of homojunctions and MnO2 /semiconductor/conductor binary/ternary heterojunctions is discussed. Their applications in environmental purification systems, either as an adsorbent material for removing heavy metals, dyes, and microwave (MW) pollution, or as a thermal catalyst, photocatalyst, and electrocatalyst for the degradation of pollutants (water and gas, organic and inorganic) are also highlighted. Finally, the research gaps are summarized and a perspective on the challenges and the direction of future research in nanostructured MnO2 -based materials in the field of environmental applications is presented. Therefore, basic guidance for rational design and fabrication of high-efficiency MnO2 -based materials for comprehensive environmental applications is provided.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Yingying Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Ruquan Ye
- Department of Chemistry, State Key Lab of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiehong Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
10
|
Abebe B, Zereffa EA, Murthy HCA. Synthesis of Poly(vinyl alcohol)-Aided ZnO/Mn 2O 3 Nanocomposites for Acid Orange-8 Dye Degradation: Mechanism and Antibacterial Activity. ACS OMEGA 2021; 6:954-964. [PMID: 33458547 PMCID: PMC7808141 DOI: 10.1021/acsomega.0c05597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 05/24/2023]
Abstract
Zinc oxide is one of the novel metal oxides utilized for diverse applications. The sol-gel and unintended self-propagation procedures were applied to synthesize the porous and high surface area ZnO-based metal oxide nanocomposite. The p-type manganese(III) oxide was successfully coupled with n-type ZnO. The physical property characterization results revealed the surface area, porosity, and charge transfer capability improvement on the poly(vinyl alcohol) (PVA)-aided binary nanocomposite (PVA-ZnO/Mn2O3), compared to ZnO. The XRD patterns and TEM image analysis validated the nanometer size range for the materials (15-60 nm). The SEM micrographs and BET spectral details have confirmed the porous nature of the PVA-ZnO/Mn2O3 nanocomposite. The supporting results were obtained from the HRTEM (IFFT) and SAED pattern analyses. The EDX and HRTEM analyses were used for the confirmation of elemental composition and reality of the PVA-ZnO/Mn2O3 composite, respectively. The presence of the improved charge transfer property for PVA-ZnO/Mn2O3, compared to ZnO, was evidenced from acid orange-8 dye degradation. The highest zone of inhibition (14 mm) was recorded on Escherichia coli bacteria for the uncalcined PVA-ZnO/Mn2O3 nanocomposite compared to PVA, yet, less zone of inhibition compared to the calcined PVA-ZnO/Mn2O3 nanocomposite. The authors recommend the formation of the couple between metal oxides by electrochemical technique analyses as a future work.
Collapse
Affiliation(s)
- Buzuayehu Abebe
- Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Enyew A. Zereffa
- Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| | - H C Ananda Murthy
- Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| |
Collapse
|
11
|
Pseudomonas aeruginosa antibacterial textile cotton fiber construction based on ZnO-TiO 2 nanorods template. Heliyon 2020; 6:e03710. [PMID: 32274436 PMCID: PMC7132160 DOI: 10.1016/j.heliyon.2020.e03710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 03/26/2020] [Indexed: 01/02/2023] Open
Abstract
An alternative method of synthesizing ZnO–TiO2 nanorods is through route precipitation and sintering at 600 °C. In this study, the introduction of Ti into Zn in the molar ratio Ti:Zn (1:3) produced a composite ZnO-Low TiO2 (ZnO-LTiO2) while 1:1 produced ZnO-High TiO2 (ZnO–HTiO2). The effect of the Ti introduced on the anti-bacterial properties of ZnO–TiO2 nanorods was investigated with the product structure characterized by XRD and the optimal intensity at 2θ: 31.72°, 34.37°, 36.19° showed a Wurzite structure and a crystal size of 35.8–41.5 nm. The average pore diameters for ZnO-LTiO2 and ZnO–HTiO2 were around 5.159 nm and 6.828 nm while the surface areas were 15.692 m2/g and 15.421 m2/g respectively. The anti-bacterial textile fiber construction was prepared using dip-spin coating with the application of an adipic acid crosslinker for 6 h and stable coating up to 10 times washing. The improvement of Pseudomonasaeruginosa (Pa) antibacterial properties in the textiles with coating had an inhibition zone of 20.5–25.0 mm and 16.2 mm without the coating. The elements of the cotton fiber construction include C at 54.60%, O at 40.89%, Ti at 0.81% and Zn at 2.60% while the TG-DTA analysis conducted showed an increase in the heat stability of the textile fibers to a temperature of 400°C, after which the textiles were modified by coating ZnO–TiO2 nanorods. The findings of this research could be successfully applied to improve the antibacterial properties of textiles.
Collapse
|
12
|
Yang X, Niu H, Jiang H, Sun Z, Wang Q, Qu F. One‐Step Synthesis of NiCo
2
S
4
/Graphene Composite for Asymmetric Supercapacitors with Superior Performances. ChemElectroChem 2018. [DOI: 10.1002/celc.201800302] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xue Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical EngineeringHarbin Normal University Harbin 150025 P. R. China
| | - Hao Niu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical EngineeringHarbin Normal University Harbin 150025 P. R. China
| | - He Jiang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical EngineeringHarbin Normal University Harbin 150025 P. R. China
| | - Zhiqin Sun
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical EngineeringHarbin Normal University Harbin 150025 P. R. China
| | - Qian Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical EngineeringHarbin Normal University Harbin 150025 P. R. China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical EngineeringHarbin Normal University Harbin 150025 P. R. China
| |
Collapse
|
13
|
Hassan SM, Ahmed AI, Mannaa MA. Structural, photocatalytic, biological and catalytic properties of SnO2/TiO2 nanoparticles. CERAMICS INTERNATIONAL 2018; 44:6201-6211. [DOI: 10.1016/j.ceramint.2018.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
14
|
Zhou Q, Zhang L, Zuo P, Wang Y, Yu Z. Enhanced photocatalytic performance of spherical BiOI/MnO2 composite and mechanism investigation. RSC Adv 2018; 8:36161-36166. [PMID: 35558504 PMCID: PMC9088711 DOI: 10.1039/c8ra06930a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/09/2018] [Indexed: 11/21/2022] Open
Abstract
In this paper, a novel flower-like BiOI/MnO2 composite was synthesized by two simple steps.
Collapse
Affiliation(s)
- Qingjie Zhou
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Lizhu Zhang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Pengjian Zuo
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yang Wang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Zhenjiang Yu
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|
15
|
Fabrication and characterization of flower-like BiOI/Pt heterostructure with enhanced photocatalytic activity under visible light irradiation. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2017.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Lu C, Bao Z, Qin C, Dai L, Zhu A. Facile fabrication of heterostructured cubic-CuFe2O4/ZnO nanofibers (c-CFZs) with enhanced visible-light photocatalytic activity and magnetic separation. RSC Adv 2016. [DOI: 10.1039/c6ra23970f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Photocatalytic mechanism of a c-CuFe2O4/ZnO nanofibers (c-CFZs) p–n heterojunction.
Collapse
Affiliation(s)
- Chuchu Lu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- People's Republic of China
| | - Zhimin Bao
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- People's Republic of China
| | - Chuanxiang Qin
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- People's Republic of China
| | - Lixing Dai
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- People's Republic of China
| | - Aiping Zhu
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- People's Republic of China
| |
Collapse
|