1
|
Cai Y, Wang C, Yuan H, Guo Y, Cho JH, Xing X, Jia Y. Exploring negative thermal expansion materials with bulk framework structures and their relevant scaling relationships through multi-step machine learning. MATERIALS HORIZONS 2024; 11:2914-2925. [PMID: 38567484 DOI: 10.1039/d3mh01509b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Discovering new negative thermal expansion (NTE) materials is a great challenge in experiment. Meanwhile, the machine learning (ML) method can be another approach to explore NTE materials using the existing material databases. Herein, we adopt the multi-step ML method with efficient data augmentation and cross-validation to identify around 1000 materials, including oxides, fluorides, and cyanides, with bulk framework structures as new potential NTE candidate materials from ICSD and other databases. Their corresponding coefficients of negative thermal expansion (CNTE) and temperature ranges are also well predicted. Among them, about 57 materials are predicted to have an NTE probability of 100%. Some predicted NTE materials were tested by the first-principles calculations with quasi-harmonic approximation (QHA), which indicates that the ML results are in good agreement with the first principles calculation results. Based on the comprehensive analysis of the existing and predicted NTE materials, we established three universal relationships of CNTE with an average electronegativity, porosity, and temperature range. From these, we also identified some important critical values characterizing the NTE property, which can serve as an important criterion for designing new NTE materials.
Collapse
Affiliation(s)
- Yu Cai
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials and Engineering, Henan University, Kaifeng 475001, China.
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Chunyan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials and Engineering, Henan University, Kaifeng 475001, China.
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Huanli Yuan
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Yuan Guo
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials and Engineering, Henan University, Kaifeng 475001, China.
- Institute of Solid States Chemistry, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jun-Hyung Cho
- Department of Physics and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-Ku, Seoul 04763, Republic of Korea
| | - Xianran Xing
- Institute of Solid States Chemistry, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials and Engineering, Henan University, Kaifeng 475001, China.
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
- Joint center for Theoretical Physics, and School of Physics and Electronics, Henan University, Kaifeng 475001, China
| |
Collapse
|
2
|
Fuller CA, Blom DA, Vogt T, Evans IR, Evans JSO. Oxide Ion and Proton Conductivity in a Family of Highly Oxygen-Deficient Perovskite Derivatives. J Am Chem Soc 2021; 144:615-624. [PMID: 34967601 DOI: 10.1021/jacs.1c11966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functional oxides showing high ionic conductivity have many important technological applications. We report oxide ion and proton conductivity in a family of perovskite-related compounds of the general formula A3OhTd2O7.5, where Oh is an octahedrally coordinated metal ion and Td is a tetrahedrally coordinated metal ion. The high tetrahedral content in these ABO2.5 compositions relative to that in the perovskite ABO3 or brownmillerite A2B2O5 structures leads to tetrahedra with only three of their four vertices connected in the polyhedral framework, imparting a potential low-energy mechanism for O2- migration. The low- and high-temperature average and local structures of Ba3YGa2O7 (P2/c, a = 7.94820(5) Å, b = 5.96986(4) Å, c = 18.4641(1) Å, and β = 91.2927(5) ° at 22 °C) were determined by Rietveld and neutron pair distribution function (PDF) analysis, and a phase transition to a high-temperature P1121/a structure (a = 12.0602(1) Å, b = 9.8282(2) Å, c = 8.04982(6) Å, and γ = 107.844(3)° at 1000 °C) involving the migration of O2- ions was identified. Ionic conductivities of Ba3YGa2O7.5 and compositions substituted to introduce additional oxide vacancies and interstitials are reported. Most phases show proton conductivity at lower temperatures and oxide ion conductivity at high temperatures, with Ba3YGa2O7.5 retaining proton conductivity at high temperatures. Ba2.9La0.1YGa2O7.55 and Ba3YGa1.9Ti0.1O7.55 appear to be dominant oxide ion conductors, with conductivities an order of magnitude higher than that of the parent compound.
Collapse
Affiliation(s)
- Chloe A Fuller
- Department of Chemistry, Science Site, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Douglas A Blom
- Department of Chemical Engineering and NanoCenter, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Thomas Vogt
- Department of Chemical Engineering, Chemistry, and Biochemistry and NanoCenter, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ivana Radosavljevic Evans
- Department of Chemistry, Science Site, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - John S O Evans
- Department of Chemistry, Science Site, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|