1
|
Sun H, Zhang Q, Wang Z, Huang Y, Pan M. Transformational Modulation of Fluorescence to Room Temperature Phosphorescence in Metal-Organic Frameworks with Flexible C-S-C Bonds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11730-11739. [PMID: 38407090 DOI: 10.1021/acsami.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Photoluminescent metal-organic frameworks (MOFs) have been a subject of considerable interest for many years. However, the regulation of excited states of MOFs at the single crystal level remains restricted due to a lack of control methods. The singlet-triplet emissive property can be significantly influenced by crystal conformational distortions. This review introduces an intelligent responsive MOF material, denoted as LIFM-SHL-3a, characterized by flexible C-S-C bonds. LIFM-SHL-3a integrates elastic structural dynamics with fluorescence and room temperature phosphorescence (RTP) modulation under heating conditions. The deformable carbon-sulfur bond essentially propels the distortion of molecular conformation and alters the stacking mode, as illustrated by single-crystal-to-single-crystal transformation detection. The deformation of flexible C-S-C bonds leads to different noncovalent interactions in the crystal system, thereby achieving modulation of the fluorescence (F) and RTP bands. In the final state structure, the ratio of fluorescence is 66.7%, and the ratio of RTP is 32.6%. This stands as a successful demonstration of modulating F/RTP within the dynamic MOF, unlocking potential applications in optical sensing and beyond. Especially, a PL thermometer with a relative sensitivity of 0.096-0.104%·K-1 in the range of 300-380 K and a H2S probe with a remarkably low LOD of 125.80 nM can be obtained using this responsive MOF material of LIFM-SHL-3a.
Collapse
Affiliation(s)
- Huili Sun
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qiangsheng Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhonghao Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanting Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Yin Q, Sun X, Dong K, Lu X, Yang F, He X, Zhong S, Diao Y, Wang Y. Dual-Emitting Ratiometric Luminescent Thermometers Based on Lanthanide Metal–Organic Complexes with Brønsted Acidic Ionic Liquids. Inorg Chem 2022; 61:18998-19009. [DOI: 10.1021/acs.inorgchem.2c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Qianqian Yin
- Department of Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Xinyue Sun
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing100049, P.R. China
| | - Kun Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Fan Yang
- Department of Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Xiaojiao He
- Department of Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Shengnan Zhong
- Department of Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Yibo Wang
- Department of Chemistry, Beijing Technology and Business University, Beijing100048, China
| |
Collapse
|
3
|
Li Z, Jiang F, Yu M, Li S, Chen L, Hong M. Achieving gas pressure-dependent luminescence from an AIEgen-based metal-organic framework. Nat Commun 2022; 13:2142. [PMID: 35440109 PMCID: PMC9018843 DOI: 10.1038/s41467-022-29737-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Materials exhibiting aggregation-induced emission (AIE) behaviour enable strong emission in solid state and can respond to various external stimuli, which may facilitate the development of materials for optical sensing, bioimaging or optoelectronic devices. Herein, we use an AIE luminogen 2’,5’-diphenyl-[1,1’:4’,1”-terphenyl]-4,4”-dicarboxylic acid as the ligand to prepare an AIEgen-based MOF (metal-organic framework) named FJI-H31. FJI-H31 exhibits bright luminescence under ambient conditions (under air and at room temperature), but almost no emission is observed under vacuum. Our investigation shows that the emission intensity displays a smooth and reversible enhancement with increased gas pressure, which may be attributed to the restriction of intramolecular motion brought by structural deformation under pressure stimulus. Unlike most pressure-responsive MOFs, the luminescence reverts to its original state once gas pressure recovers. By virtue of its unique optical properties, a luminescent MOF with sensing ability of gas-pressure is realized. Compounds displaying aggregation-induced emission behavior may have application in the preparation of smart materials. Here, the authors report a luminogen-containing metal-organic framework for which luminescence intensity changes are observed in response to gas pressure.
Collapse
Affiliation(s)
- Zhijia Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Muxin Yu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shengchang Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Lian Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Li Y, Xiao X, Wei Z, Chen Y. A Ratio Fluorescence Thermometer Based on Carbon Dots & Lanthanide Functionalized Metal‐Organic Frameworks. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanping Li
- Changsha Normal University College of Information Science and Engineering Changsha normal university,NO.9 Teli Road,Changsha, Hunan Province 410100 Changsha CHINA
| | | | | | | |
Collapse
|
5
|
Chakraborty G, Park IH, Medishetty R, Vittal JJ. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem Rev 2021; 121:3751-3891. [PMID: 33630582 DOI: 10.1021/acs.chemrev.0c01049] [Citation(s) in RCA: 291] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gouri Chakraborty
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | | | - Jagadese J. Vittal
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
6
|
Li Y, Wang D, Li S, Zhang H, Zhang L, Huang F. Magnetically Separable Fe
3
O
4
@Au@Tb‐MOF Fluorescent Probe with Well‐Designed Sandwich Structure and Metal‐Enhanced Fluorescence. ChemistrySelect 2020. [DOI: 10.1002/slct.202000455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yinghui Li
- Lab of Clean Energy & Environmental Catalysis, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functional Materials, Institute of Physical Science and Information TechnologySchool of Chemistry and Chemical Engineering, Anhui University Hefei 230601 PR China
| | - Dandan Wang
- Lab of Clean Energy & Environmental Catalysis, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functional Materials, Institute of Physical Science and Information TechnologySchool of Chemistry and Chemical Engineering, Anhui University Hefei 230601 PR China
| | - Shikuo Li
- Lab of Clean Energy & Environmental Catalysis, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functional Materials, Institute of Physical Science and Information TechnologySchool of Chemistry and Chemical Engineering, Anhui University Hefei 230601 PR China
| | - Hui Zhang
- Lab of Clean Energy & Environmental Catalysis, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functional Materials, Institute of Physical Science and Information TechnologySchool of Chemistry and Chemical Engineering, Anhui University Hefei 230601 PR China
| | - Lina Zhang
- Lab of Clean Energy & Environmental Catalysis, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functional Materials, Institute of Physical Science and Information TechnologySchool of Chemistry and Chemical Engineering, Anhui University Hefei 230601 PR China
| | - Fangzhi Huang
- Lab of Clean Energy & Environmental Catalysis, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functional Materials, Institute of Physical Science and Information TechnologySchool of Chemistry and Chemical Engineering, Anhui University Hefei 230601 PR China
| |
Collapse
|
7
|
Mixed-LnMOFs with tunable color and white light emission together with multi-functional fluorescence detection. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.120972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Islam S, Datta J, Maity S, Dutta B, Ahmed F, Ghosh P, Ray PP, Mir MH. Halogen⋅⋅⋅π Interactions in Supramolecular Architecture of 1D Coordination Polymers and Their Electrical Conductance. ChemistrySelect 2019. [DOI: 10.1002/slct.201900578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sakhiul Islam
- Department of ChemistryAliah University, New Town Kolkata 700 156 India
| | - Joydeep Datta
- Department of PhysicsJadavpur University, Jadavpur Kolkata 700 032 India
| | - Suvendu Maity
- Department of ChemistryJadavpur University, Jadavpur Kolkata 700 032 India
| | - Basudeb Dutta
- Department of ChemistryAliah University, New Town Kolkata 700 156 India
| | - Faruk Ahmed
- Department of ChemistryAliah University, New Town Kolkata 700 156 India
| | - Prasanta Ghosh
- Department of ChemistryR. K. M. Residential College, Narendrapur Kolkata 700 103 India
| | - Partha Pratim Ray
- Department of PhysicsJadavpur University, Jadavpur Kolkata 700 032 India
| | | |
Collapse
|
9
|
Luo QY, Luo H, Kuang HM, Chen WT, Wen YX. A novel samarium material: Synthesis, structure, photophysical properties and photoluminescence energy transfer mechanism. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Wang Y, Astruc D, Abd-El-Aziz AS. Metallopolymers for advanced sustainable applications. Chem Soc Rev 2019; 48:558-636. [PMID: 30506080 DOI: 10.1039/c7cs00656j] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the development of metallopolymers, there has been tremendous interest in the applications of this type of materials. The interest in these materials stems from their potential use in industry as catalysts, biomedical agents in healthcare, energy storage and production as well as climate change mitigation. The past two decades have clearly shown exponential growth in the development of many new classes of metallopolymers that address these issues. Today, metallopolymers are considered to be at the forefront for discovering new and sustainable heterogeneous catalysts, therapeutics for drug-resistant diseases, energy storage and photovoltaics, molecular barometers and thermometers, as well as carbon dioxide sequesters. The focus of this review is to highlight the advances in design of metallopolymers with specific sustainable applications.
Collapse
Affiliation(s)
- Yanlan Wang
- Liaocheng University, Department of Chemistry and Chemical Engineering, 252059, Liaocheng, China.
| | | | | |
Collapse
|
11
|
Etaiw SEDH, Marie H. Ultrasonic synthesis of 1D-Zn(II) and La(III) supramolecular coordination polymers nanoparticles, fluorescence, sensing and photocatalytic property. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|