1
|
Yuan N, Ma H, Li B, Zhang X, Tan K, Chen T, Yuan L. When covalent organic frameworks meet zeolites: Enhancing rhodamine B removal through the synergy in the emerging organic-inorganic nanoadsorbents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124191. [PMID: 38782164 DOI: 10.1016/j.envpol.2024.124191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The development of new porous materials has attracted intense attention as adsorbents for removing pollutants from wastewater. However, pure inorganic and organic porous materials confront various problems in purifying the wastewater. In this work, we integrated a covalent organic framework (TpPa-1) with an inorganic zeolite (TS-1) for the first time via a solvothermal method to fabricate new-type nanoadsorbents. The covalent organic framework/zeolite (TpPa-1/TS-1) nanoadsorbents combined the merits of the zeolite and COF components and possessed efficient adsorptive removal of organic contaminants from solution. Structural morphology and chemical composition characterization by powder X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis demonstrated the successful preparation of TpPa-1/TS-1 composite nanoadsorbents. The resultant composite adsorbent TpPa-1/TS-1 removed rhodamine B at 1.7 and 2.6 times the efficiency of TpPa-1 and TS-1, respectively. Additional investigation revealed that the Freundlich adsorption isotherm and the pseudo-second-order kinetic model could be employed to represent the adsorption process more appropriately. Thermodynamic calculation analysis showed that the adsorption process proceeded spontaneously and exothermically. Besides, the effects of pH, absorbent mass and ionic strength on the adsorption performance were systematically investigated. The prepared composite adsorbent showed a slight decrease in removal efficiency after eight cycles of repeated use, and real water environment experiments also showed the high stability of the adsorbent. The enhanced performance can be attributed to electrostatic interaction, acid-base interaction, hydrogen bonding and π-π interactions.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Huiying Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Bowen Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Xinling Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Kaiqi Tan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Tianxiang Chen
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Lili Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| |
Collapse
|
4
|
Kapil N, Cardinale F, Weissenberger T, Trogadas P, Nijhuis TA, Nigra MM, Coppens MO. Gold nanoparticles with tailored size through ligand modification for catalytic applications. Chem Commun (Camb) 2021; 57:10775-10778. [PMID: 34586128 DOI: 10.1039/d1cc04165g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The active sites of catalysts can be tuned by using appropriate organic moieties. Here, we describe a facile approach to synthesise gold nanoparticles (AuNPs) using various Au(I) precursors. The core size of these AuNPs can be precisely tailored by varying the steric hindrance imposed by bound ligands. An interesting relationship is deduced that correlates the steric hindrance around the metal to the final size of the nanoparticles. The synthesised AuNPs are immobilised onto TS-1 zeolite (Au/TS-1) with minimal change in the final size of the AuNPs. The catalytic performance of Au/TS-1 catalyst is evaluated for the direct gas phase epoxidation of propylene with hydrogen and oxygen, an environmentally friendly route to produce propylene oxide. The results indicate that smaller AuNPs exhibit enhanced catalytic activity and selectivity. Furthermore, this synthetic approach is beneficial when tailored synthesis of gold nanoparticles of specific sizes is required.
Collapse
Affiliation(s)
- Nidhi Kapil
- Centre for Nature Inspired Engineering and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| | - Fabio Cardinale
- Centre for Nature Inspired Engineering and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| | - Tobias Weissenberger
- Centre for Nature Inspired Engineering and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| | - Panagiotis Trogadas
- Centre for Nature Inspired Engineering and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| | | | - Michael M Nigra
- Department of Chemical Engineering, University of Utah, Salt Lake City UT 84112, USA.
| | - Marc-Olivier Coppens
- Centre for Nature Inspired Engineering and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| |
Collapse
|
6
|
He J, Lai C, Qin L, Li B, Liu S, Jiao L, Fu Y, Huang D, Li L, Zhang M, Liu X, Yi H, Chen L, Li Z. Strategy to improve gold nanoparticles loading efficiency on defect-free high silica ZSM-5 zeolite for the reduction of nitrophenols. CHEMOSPHERE 2020; 256:127083. [PMID: 32464359 DOI: 10.1016/j.chemosphere.2020.127083] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Catalytic reduction of toxic and aqueous stable nitrophenols by gold nanoparticles (Au NPs) is hot issue due to the serious environmental pollution in recent years. But the expensive price and poor recycling performance of Au NPs limit its further application. Defect-free high silica zeolite is suitable support for Au NPs due to its cheaper price, higher stability and stronger adsorbability, but the low alumina content and defect sites usually lead to poor Au NPs loading efficiency. Herein, we reported the improved Au NPs loading efficiency on defect-free high silica ZSM-5 zeolite through the additional surface fluffy structure. The fluffy structure was created through the addition of multi-walled carbon nanotubes (MWCNTs) and ethanol into synthesis gel. Highly dispersed ca. 4 nm Au NPs on zeolite surface are prepared by the green enhanced sol-gel immobilization method. The Au NPs loading efficiency on conventional ZSM-5 zeolite is 10.7%, in contrast, this result can arrive to 82.6% on fluffy structure ZSM-5 zeolite. The fluffy structure ZSM-5 zeolite and Au NPs nanocomposites show higher efficiency than traditional Au/ZSM-5 nanocomposites towards catalytic reduction of nitrophenols. Additionally, the experiments with different affecting factors (MWCNTs dosage, aging time, catalysts dosage, pH, initial 4-NP concentration, storage time and recycling times) were carried out to test general applicability of the nanocomposites. And the degradation of nitrophenols experiment was operated to explore the catalytic performance of the prepared nanocomposites in further environmental application. The detailed possible relationship between zeolite with fluffy structure and Au NPs is also proposed in the paper.
Collapse
Affiliation(s)
- Jiangfan He
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China.
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Lingjie Jiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, PR China
| | - Zhongwu Li
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha, Hunan, 410082, PR China
| |
Collapse
|
9
|
Advances in Designing Au Nanoparticles for Catalytic Epoxidation of Propylene with H2 and O2. Catalysts 2020. [DOI: 10.3390/catal10040442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Au nanoparticles, which can be used in various industrial and environmental applications, have drawn substantial research interest. In this review, a comprehensive background and some insights are provided regarding recent studies concerning the use of Au nanoparticles for catalytic propylene epoxidation with H2 and O2. Over the last two decades, substantial progress has been made toward the efficient production of propylene oxide (PO); this includes the design of highly dispersed Au catalysts on Ti-modified mesoporous silica supports, the optimization of catalytic epoxidation, and the determination of the mechanisms and reaction pathways of epoxidation. Particularly, the critical roles of catalyst synthesis, the types of material support, Au nanoparticle sizes, and the dispersion amounts of Au nanoparticles are emphasized in this review. In future studies, novel, practical, robust, and highly PO-selective Au nanoparticle catalyst systems are expected to be continually designed for the enhanced catalytic epoxidation of propylene.
Collapse
|
11
|
Hong Y, Huang J, Zhan G, Li Q. Biomass-Modified Au/TS-1 as Highly Efficient and Stable Nanocatalysts for Propene Epoxidation with O2 and H2. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yingling Hong
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
- College of Food and Biology Engineering, Jimei University, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
14
|
Zhu M, Zhu C, Wu D, Wang X, Wang H, Gao J, Huang H, Shi C, Liu Y, Kang Z. Efficient photocatalytic water splitting through titanium silicalite stabilized CoO nanodots. NANOSCALE 2019; 11:15984-15990. [PMID: 31424466 DOI: 10.1039/c9nr05057d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Water can be split into hydrogen (H2) and hydrogen peroxide (H2O2) in an environment-friendly manner through photocatalysis by CoO, which is a promising strategy to alleviate the energy crisis. However, the stability of CoO remains a great challenge because of the oxidation effect of the product H2O2. Herein, titanium silicalite-1 (TS-1) was employed as a framework to obtain and anchor monodisperse CoO nanodots, improve CoO photocatalytic performance, and efficiently separate the oxidizing species from CoO by adsorbing the resulting H2O2. As a result, TS-1 prevented CoO from aggregation, surface oxidation, and rapid inactivation. CoO-TS-1 showed H2 and H2O2 production rates of 1460 μmol h-1 gCoO-1 and 1390 μmol h-1 gCoO-1, respectively, with a high photostability for about 168 h. In addition, the efficiently harvested H2O2 was directly used in the oxidation of cyclohexane to cyclohexanol and cyclohexanone with a selectivity of up to 89.48%. This work paves a new way for the design of an efficient and stable photocatalyst as well as product utilization.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|