1
|
Lapa HM, Martins LMDRS. Toluene Oxidation: CO 2 vs Benzaldehyde: Current Status and Future Perspectives. ACS OMEGA 2024; 9:26780-26804. [PMID: 38947821 PMCID: PMC11209706 DOI: 10.1021/acsomega.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024]
Abstract
Toluene is a common and significant volatile organic compound (VOC). Although it finds extensive application in various industrial processes (chemical manufacturing, paint and adhesive production, and as a solvent), it creates a huge environmental impact when emitted freely into the atmosphere. Two solutions were found to mitigate the emission of this pollutant: the total oxidation to CO2 and H2O and the selective oxidation into benzaldehyde. This review discusses the two main alternatives for tackling this problem: converting the toluene into carbon dioxide by total oxidation or into benzaldehyde by selective oxidation. It presents new catalytic advances, new trends, and the advantages and disadvantages of both methods.
Collapse
Affiliation(s)
- Hugo M. Lapa
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto
Superior Técnico, Universidade de
Lisboa, Lisboa 1049-001, Portugal
- Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Departamento
de Engenharia Química, Instituto Superior de Engenharia de
Lisboa, Instituto Politécnico de
Lisboa, 1059-007 Lisboa, Portugal
| | - Luísa M. D. R. S. Martins
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto
Superior Técnico, Universidade de
Lisboa, Lisboa 1049-001, Portugal
- Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| |
Collapse
|
2
|
Che G, Zhao Y, Yang W, Zhou Q, Li X, Pan Q, Su Z. Preparation of a Nanosheeted Uranyl-Organic Framework for Enhanced Photocatalytic Oxidation of Toluene. Inorg Chem 2024; 63:10767-10774. [PMID: 38781222 DOI: 10.1021/acs.inorgchem.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Preparation of ultrathin metal-organic framework (MOF) nanosheets is an effective way to improve the catalytic efficiency of MOF photocatalysts owing to their superiority in reducing the recombination rate of photogenerated electrons and holes and enhancing charge transfer. Herein, a light-sensitive two-dimensional uranyl-organic framework named HNU-68 was synthesized. Due to its interlayer stacking structure, the corresponding ultrathin nanosheets with a thickness of 4.4 nm (HNU-68-N) can be obtained through ultrasonic exfoliation. HNU-68-N exhibited an enhanced ability to selectively oxidize toluene to benzaldehyde, with the value of turnover frequency being approximately three times higher than that of the bulk HNU-68. This enhancement is attributed to the smaller size and interface resistance of the layered HNU-68-N nanosheets, which facilitate more thorough substrate contact and faster charge transfer, leading to an improvement in the photocatalytic efficiency. This work provides a potential candidate for the application of ultrathin uranyl-based nanosheets.
Collapse
Affiliation(s)
- Guang Che
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Yixin Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Qi Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xinyi Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
| | - Zhongmin Su
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Sun L, Zhao S, Tang X, Yu Q, Gao F, Liu J, Wang Y, Zhou Y, Yi H. Recent advances in catalytic oxidation of VOCs by two-dimensional ultra-thin nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170748. [PMID: 38340848 DOI: 10.1016/j.scitotenv.2024.170748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Catalytic oxidation, an end-of-pipe treatment technology for effectively purifying volatile organic compounds (VOCs), has received widespread attention. The crux of catalytic oxidation lies in the development of efficient catalysts, with their optimization necessitating a comprehensive analysis of the catalytic reaction mechanism. Two-dimensional (2D) ultra-thin nanomaterials offer significant advantages in exploring the catalytic oxidation mechanism of VOCs due to their unique structure and properties. This review classifies strategies for regulating catalytic properties and typical applications of 2D materials in VOCs catalytic oxidation, in addition to their characteristics and typical characterization techniques. Furthermore, the possible reaction mechanism of 2D Co-based and Mn-based oxides in the catalytic oxidation of VOCs is analyzed, with a special focus on the synergistic effect between oxygen and metal vacancies. The objective of this review is to provide valuable references for scholars in the field.
Collapse
Affiliation(s)
- Long Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qingjun Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ya Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuansong Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
4
|
Wang B, Ding Y, Yin S, Cai M. A DFT Study on the Mechanism of Active Species in Selective Photocatalytic Oxidation of Toluene into Benzaldehyde on (WO
3
)
3
Clusters. ChemistrySelect 2022. [DOI: 10.1002/slct.202203173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bin Wang
- Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications School of Physics and Electronics Science Hunan University Changsha 410082 P. R. China
| | - Yu‐Feng Ding
- Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications School of Physics and Electronics Science Hunan University Changsha 410082 P. R. China
| | - Shuang‐Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions Hunan University Changsha 410082 Hunan Province P. R. China
| | - Meng‐Qiu Cai
- Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications School of Physics and Electronics Science Hunan University Changsha 410082 P. R. China
| |
Collapse
|
5
|
Okunaka S, Hitomi Y, Tokudome H. Boosting the visible-light-induced toluene oxidation via synergistic effect between nanoparticulate Pd/BiVO4 photocatalyst and a cyclic nitroxyl redox mediator. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Revealing the Mechanisms of Photocatalytic Toluene Selective Oxidation on Titanium Dioxide Cluster with Density Functional Theory Calculations. Catal Letters 2022. [DOI: 10.1007/s10562-022-04139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Zhou D, Du R, Hu Z, Gao S, Tu Y, Fu Y, Zheng G, Zhou Y. Fabrication of Bi 2MoO 6 Nanosheets/TiO 2 Nanorod Arrays Heterostructures for Enhanced Photocatalytic Performance under Visible-Light Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:574. [PMID: 35159919 PMCID: PMC8840124 DOI: 10.3390/nano12030574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 01/20/2023]
Abstract
Bi2MoO6/TiO2 heterostructures (HSs) were synthesized in the present study by growing Bi2MoO6 nanosheets on vertically aligned TiO2 nanorod arrays using a two-step solvothermal method. Their morphology and structure were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Excellent visible-light absorption was observed by UV-Vis absorption spectroscopy, which was attributed to the presence of the Bi2MoO6 nanosheets with a narrow-band-gap. The specific surface area and pore volume of the photocatalysts were significantly increased due to the hierarchical structure composed of Bi2MoO6 nanosheets and TiO2 nanorods. The photoluminescence and photoelectrochemical characterizations showed improved separation and collection efficiency of the Bi2MoO6/TiO2 HSs towards the interface charge carrier. The photocatalytic analysis of the Bi2MoO6/TiO2 HSs demonstrated a significantly better methylene blue (MB) degradation efficiency of 95% within 3 h than pristine TiO2 nanorod arrays under visible-light irradiation. After three photocatalytic cycles, the degradation rate remained at ~90%. The improved performance of the Bi2MoO6/TiO2 HSs was attributed to the synergy among the extended absorption of visible light; the large, specific surface area of the hierarchical structure; and the enhanced separation efficiency of the photogenerated electron-hole pairs. Finally, we also established the Bi2MoO6/TiO2 HSs band structure and described the photocatalytic dye degradation mechanism. The related electrochemical analysis and free-radical trapping experiments indicated that h+, ·O2- and ·OH have significant effects on the degradation process.
Collapse
Affiliation(s)
- Di Zhou
- School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, China; (D.Z.); (R.D.); (S.G.); (Y.T.); (Y.F.); (Y.Z.)
| | - Rui Du
- School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, China; (D.Z.); (R.D.); (S.G.); (Y.T.); (Y.F.); (Y.Z.)
| | - Zhenglong Hu
- Laboratory of Low-Dimension Functional Nanostructures and Devices, Hubei University of Science and Technology, Xianning 437100, China
| | - Shu Gao
- School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, China; (D.Z.); (R.D.); (S.G.); (Y.T.); (Y.F.); (Y.Z.)
| | - Yafang Tu
- School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, China; (D.Z.); (R.D.); (S.G.); (Y.T.); (Y.F.); (Y.Z.)
| | - Yunfei Fu
- School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, China; (D.Z.); (R.D.); (S.G.); (Y.T.); (Y.F.); (Y.Z.)
| | - Guang Zheng
- School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, China; (D.Z.); (R.D.); (S.G.); (Y.T.); (Y.F.); (Y.Z.)
| | - Youhua Zhou
- School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, China; (D.Z.); (R.D.); (S.G.); (Y.T.); (Y.F.); (Y.Z.)
| |
Collapse
|
8
|
Mal DD, Pradhan D. Recent advances in non-noble metal-based oxide materials as heterogeneous catalysts for C–H activation. Dalton Trans 2022; 51:17527-17542. [DOI: 10.1039/d2dt02613a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This perspective article summarizes the recent developments of non-noble metal-based oxides, as a new class of catalysts for C−H bond activation, focusing on their essential surface properties.
Collapse
Affiliation(s)
- Diptangshu Datta Mal
- Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, W. B., India
| | - Debabrata Pradhan
- Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, W. B., India
| |
Collapse
|
9
|
Chai ZM, Wang BH, Tan YX, Bai ZJ, Pan JB, Chen L, Shen S, Guo JK, Xie TL, Au CT, Yin SF. Enhanced Photocatalytic Activity for Selective Oxidation of Toluene over Cubic–Hexagonal CdS Phase Junctions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhao-Ming Chai
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Bing-Hao Wang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Yu-Xuan Tan
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Zhang-Jun Bai
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Jin-Bo Pan
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Lang Chen
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Sheng Shen
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Jun-Kang Guo
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Ting-Liang Xie
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Chak-Tong Au
- College of Chemical Engineering, Fuzhou University, Fuzhou 350002, Fujian, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| |
Collapse
|
10
|
|
11
|
Special-selective C–H oxidation of toluene to benzaldehyde by a hybrid polyoxometalate photocatalyst including a rare [P6W48Fe6O180]30– anion. J Catal 2020. [DOI: 10.1016/j.jcat.2020.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Luo L, Zhang T, Wang M, Yun R, Xiang X. Recent Advances in Heterogeneous Photo-Driven Oxidation of Organic Molecules by Reactive Oxygen Species. CHEMSUSCHEM 2020; 13:5173-5184. [PMID: 32721068 DOI: 10.1002/cssc.202001398] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The photo-driven oxidation of organic molecules into corresponding high-value-added products has become a promising method in chemical synthesis. This strategy can drive thermodynamically non-spontaneous reactions and achieve challenging thermocatalytic processes under ambient conditions. Reactive oxygen species (ROS) are not only significant intermediates for producing target products via photoinduced oxidation reactions but also contribute to the creation of sustainable chemical processes. Here, the latest advances in heterogeneous photo-driven oxidation reactions involving ROS are summarized. The major types of ROS and their generation are introduced, and the behaviors of various ROS involved in photo-driven processes are reviewed in terms of the formation of different bonds. Emphasis is placed on unraveling the reaction mechanisms of ROS and establishing strategies for their regulation, and the remaining challenges and perspectives are summarized and analyzed. This Review is expected to provide an in-depth understanding of the mechanisms of ROS involved in photo-driven oxidation processes as an important foundation for the design of efficient catalysts. Clarifying the role of ROS in oxidation reactions has important scientific significance for improving the atomic and energy efficiency of reactions in practical applications.
Collapse
Affiliation(s)
- Lan Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Tingting Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Miao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Rongping Yun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| |
Collapse
|
13
|
Deng XX, Tian S, Chai ZM, Bai ZJ, Tan YX, Chen L, Guo JK, Shen S, Cai MQ, Au CT, Yin SF. Boosted Activity for Toluene Selective Photooxidation over Fe-Doped Bi 2WO 6. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xin-Xin Deng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Sheng Tian
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Zhao-Ming Chai
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Zhang-Jun Bai
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Yu-Xuan Tan
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Lang Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Jun-Kang Guo
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Sheng Shen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Meng-Qiu Cai
- School of Physics and Electronics Science, Hunan University, Changsha 410082, P. R. China
| | - Chak-Tong Au
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province 411104, P. R. China
| | - Shuang-Feng Yin
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
14
|
Yu ZL, Zhao YQ, Wan Q, Liu B, Yang JL, Cai MQ. Theoretical study on the effect of the optical properties and electronic structure for the Bi-doped CsPbBr 3. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:205504. [PMID: 31968314 DOI: 10.1088/1361-648x/ab6e90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal doping, including Bi, Yb, Eu, Sb and so on, are important means to improve the photoelectric properties and stability of metal halide perovskite materials. Among these works, Bi-doped CsPbBr3 especially has attracted much attention for both experimental and theoretical investigation. But there are still some arguments to be solved. One view thinks that Bi doping in CsPbBr3 not only influences the band structure, but also improves the charge transfer (Raihana et al 2017 J. Am. Chem. Soc. 139 731-7). The other supported the points that there are no changes in the valence band structure of Bi-doped CsPbBr3 and the concept of the band-gap engineering in Bi-doped CsPbBr3 halide perovskite is not valid (Olga et al 2018 J. Phys. Chem. Lett. 9 5408-11). They also have different opinions for the reason of the red-shift phenomenon caused by Bi-doped CsPbBr3. In this work, the density functional theory (DFT) based first-principles methods is adopted to investigate the effect of the optical properties and electronic structure for Bi doping CsPbBr3. The calculated results clarify that the red-shift phenomenon is caused by the slight reduction of band gap and the transition levels of Bii and BiPb defects. The values of red-shift also were estimated about 150 meV for Bii defects, which is close the experimental value of about 140 meV. Moreover, our studies also show that the Bi doping does not affect the valence bands, but Bii defects change the electron distribution of the conduction band. Our work and experimental results support and confirm each other, which provides a useful reference for the study of Sb-doped CsPbBr3, Eu-doped CsPbBr3 and so on.
Collapse
Affiliation(s)
- Zhuo-Liang Yu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
Large-scale fabrication of upconversion/quantum dots photocatalyst film by a facile spin-coating method. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2019.121092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Najafidoust A, Haghighi M, Abbasi Asl E, Bananifard H. Sono-solvothermal design of nanostructured flowerlike BiOI photocatalyst over silica-aerogel with enhanced solar-light-driven property for degradation of organic dyes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.075] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Feng T, Yin H, Jiang H, Chai X, Li X, Li D, Wu J, Liu X, Sun B. Design and fabrication of polyaniline/Bi2MoO6 nanocomposites for enhanced visible-light-driven photocatalysis. NEW J CHEM 2019. [DOI: 10.1039/c9nj01651a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PANI/Bi2MoO6 composites with improved photoelectrochemical performance and accessible interfacial active sites were fabricated for enhanced visible-light-driven photocatalytic degradation of RhB.
Collapse
Affiliation(s)
- Tiantian Feng
- School of Science
- China University of Geosciences (Beijing)
- Beijing 100083
- P. R. China
| | - Hao Yin
- School of Science
- China University of Geosciences (Beijing)
- Beijing 100083
- P. R. China
| | - Hao Jiang
- School of Science
- China University of Geosciences (Beijing)
- Beijing 100083
- P. R. China
| | - Xin Chai
- School of Science
- China University of Geosciences (Beijing)
- Beijing 100083
- P. R. China
| | - Xinle Li
- The Molecular Foundry
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Deyang Li
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Jing Wu
- School of Science
- China University of Geosciences (Beijing)
- Beijing 100083
- P. R. China
| | - Xuanhe Liu
- School of Science
- China University of Geosciences (Beijing)
- Beijing 100083
- P. R. China
| | - Bing Sun
- School of Science
- China University of Geosciences (Beijing)
- Beijing 100083
- P. R. China
| |
Collapse
|